Ultrafast Nanoplasmonic Photoemission

  • Péter DombiEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 86)


The interaction of ultrashort laser pulses with plasmonic nanostructures enables the extreme, unprecedented localization of electromagnetic fields in both space and time. Ultrashort plasmonic fields can be bound to the closest nanoscale vicinity of nanoparticles and thin films and this way, new aspects of fundamental photoemission and other electron phenomena can be demonstrated. Here, we will review these phenomena including strong-field nanoplasmonic photoemission and keV electron acceleration on the nanoscale.


Metal Film Laser Field Field Enhancement Electron Acceleration Field Enhancement Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author acknowledges support from the “Lendület” program of the Hungarian Academy of Sciences, the National R&D Office (OTKA project 109257) and the Partner Group Program of the Max Planck Society.


  1. 1.
    K. Kneipp et al., Single molecule detection using surface-enhanced Raman scattering (SERS) Phys. Rev. Lett. 78, 1667–1670 (1997)Google Scholar
  2. 2.
    S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding. Nat. Photon. 1, 641–648 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    H.J. Simon, D.E. Mitchell, J.G. Watson, Optical second-harmonic generation with surface plasmons in silver films. Phys. Rev. Lett. 33, 1531–1534 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    J.C. Quail, J.G. Rako, H.J. Simon, R.T. Deck, Optical second-harmonic generation with long-range surface plasmons. Phys. Rev. Lett. 50, 1987–1990 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    D. Polyushkin, I. Márton, P. Rácz, P. Dombi, E. Hendry, W.L. Barnes, Mechanisms of THz generation from silver nanoparticle and nanohole arrays illuminated by 100 fs pulses of infrared light. Phys. Rev. B 89, 125–426 (2014)Google Scholar
  6. 6.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988)Google Scholar
  7. 7.
    J.A. Schuller et al., Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    H. Atwater, The promise of plasmonics. Sci. Am. 296, 56–63 (2007)CrossRefGoogle Scholar
  9. 9.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)Google Scholar
  10. 10.
    J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F.R. Aussenegg, A. Leitner, E. List, J.R. Krenn, Organic plasmon-emitting diode. Nat. Photon. 2, 684–687 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    A.L. Falk, F.H.L. Koppens, C.L. Yu, K. Kang, N. de Leon Snapp, A.V. Akimov, M.-H. Jo, M.D. Lukin, H. Park, Near-field electrical detection of optical plasmons and single-plasmon sources. Nat. Phys. 5, 475–479 (2009)CrossRefGoogle Scholar
  13. 13.
    V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8, 4391–4397 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    T. Tsang, T. Srinivasan-Rao, J. Fischer, Surface-plasmon-enhanced multiphoton photoelectric emission from thin silver films. Opt. Lett. 15, 866–868 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    T. Tsang, T. Srinivasan-Rao, J. Fischer, Surface-plasmon field-enhanced multiphoton photoelectric emission from metal films. Phys. Rev. B 43, 8870–8878 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    S.E. Irvine, Laser-field femtosecond electron pulse generation using surface plasmons. Ph. D. Thesis, University of Alberta, Canada (2006)Google Scholar
  17. 17.
    C. Lemell, X.-M. Tong, F. Krausz, J. Burgdörfer, Electron emission from metal surfaces by ultrashort pulses: determination of the carrier-envelope phase. Phys. Rev. Lett. 90, 076403 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    H. Petek, S. Ogawa, Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997)Google Scholar
  19. 19.
    P. Dombi et al., Observation of few-cycle, strong-field phenomena in surface plasmon fields. Opt. Express 18, 24206 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    W.S. Fann, R. Storz, J. Bokor, Observation of above-threshold multiphoton photoelectric emission from image potential surface states. Phys. Rev. B 44, 10980 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    G. Farkas et al., Above-threshold multiphoton photoelectric effect of a gold surface. Opt. Eng. 32, 2476 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    M. Aeschlimann et al., Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit. J. Chem. Phys. 102, 8606 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    F. Bisio et al., Mechanisms of high-order perturbative photoemission from Cu(001). Phys. Rev. Lett. 96, 087601 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    F. Banfi et al., Experimental evidence of above-threshold photoemission in solids. Phys. Rev. Lett. 94, 037601 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    P. Agostini et al., Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M.A. Kasevich, Field emission tip as a nanometer source of free electron femtosecond pulses. Phys. Rev. Lett. 96, 077401 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    R. Bormann et al., Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105, 147601 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    B. Piglosiewicz et al., Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Phot. 8, 37–42 (2014)Google Scholar
  29. 29.
    M. Schenk, M. Krüger, P. Hommelhoff, Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105, 257601 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    V.T. Binh, N. Garcia, S.T. Purcell, Electron field emission from atom-sources: fabrication, properties, and applications of nanotips. Adv. Imaging Electron Phys. 95, 63 (1996)CrossRefGoogle Scholar
  31. 31.
    G. Farkas, S.L. Chin, P. Galarneau, F. Yergeau, A new type of intense \({{\rm CO}}_2\) laser induced electron emission from a gold surface. Opt. Comm. 48, 275 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    P. Dombi et al., Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 13, 674–678 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    P. Dombi, P. Antal, Invetisgation of a 200-nJ chirped-pulse Ti: sapphire oscillator for white light generation. Laser Phys. Lett. 4, 538 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    P. Dombi, P. Antal, J. Fekete, R. Szipöcs, Z. Várallyay, Chirped-pulse supercontinuum generation with a long-cavity Ti: sapphire oscillator. Appl. Phys. B 88, 379 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    J. Fekete, P. Rácz, P. Dombi, Compression of long-cavity Ti:sapphire oscillator pulses with large-mode-area photonic crystal fibers. Appl. Phys. B 111, 415–418 (2013)Google Scholar
  36. 36.
    G. Reider, XUV attosecond pulses: generation and measurement. J. Phys. D 37, R37–R48 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    P. Dombi, P. Rácz, B. Bódi, Surface-plasmon enhanced electron acceleration with few-cycle laser pulses. Laser Part. Beams 27, 291 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    J. Zawadzka, D. Jaroszynski, J.J. Carey, K. Wynne, Evanescent-wave acceleration of femtosecond electron bunches. Nucl. Instr. Meth. Phys. Res. A 445, 324–328 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    J. Zawadzka, D. Jaroszynski, J.J. Carey, K. Wynne, Evanescent-wave acceleration of ultrashort electron pulses. Appl. Phys. Lett. 79, 2130–2132 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    J. Kupersztych, P. Monchicourt, M. Raynaud, Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission. Phys. Rev. Lett. 86, 5180–5183 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    S.E. Irvine, A. Dechant, A.Y. Elezzabi, Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. Phys. Rev. Lett. 93, 184801 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    S.M. Teichmann, P. Rácz, M. Ciappina, J.A. Pérez-Hernandez, A. Thai, J. Fekete, L. Veisz, J. Biegert, P. Dombi, Strong-field plasmonic photoemission in the mid-IR \(<1{{\rm GW/cm}}^{2}\) at intensity, Sci. Rep. 5, 7584 (2015)Google Scholar
  43. 43.
    O. Chalus, A. Thai, P.K. Bates, J. Biegert, Six-cycle mid-infrared source with 3.8 \(\mu \)J at 100 kHz. Opt. Lett. 35, 3204–3206 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    C. Farkas, C. Tóth, A. Köházi-Kis, Above-threshold multiphoton photoelectric effect of a gold surface. Opt. Eng. 32, 2476–2480 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    G.G. Paulus, W. Becker, W. Nicklich, H. Walther, Rescattering effects in above-threshold ionization: a classical model. J. Phys. B: At. Mol. Opt. Phys. 27, L703–L708 (1994)ADSCrossRefGoogle Scholar
  46. 46.
    P. Rácz, S.E. Irvine, M. Lenner, A. Mitrofanov, A. Baltuska, A.Y. Elezzabi, P. Dombi, Strong-field plasmonic electron acceleration with few-cycle, phase-stabilized laser pulses. Appl. Phys. Lett. 98, 111116 (2011)Google Scholar
  47. 47.
    P. Rácz, S.E. Irvine, M. Lenner, A. Mitrofanov, A. Baltuska, A.Y. Elezzabi, P. Dombi, Strong-field plasmonic electron acceleration with few-cycle, phase-stabilized laser pulses. Appl. Phys. Lett. 98, 111116 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    M. Krüger, M. Schenk, M. Föster, P. Hommelhoff, Attosecond physics in photoemission from a metal nanotip. J. Phys. B 45, 074006 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    I. Park, K. Seungchul, C. Joonhee, D.H. Lee, Y.J. Kim, M.F. Kling, M.I. Stockman, S.W. Kim, Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photon. 5, 677 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    W.S. Graves, F.X. Kartner, D.E. Moncton, P. Piot, Intense superradiant X rays from a compact source using a nanocathode array and emittance exchange. Phys. Rev. Lett. 108, 263904 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    R.K. Li, H. To, G. Andonian, J. Feng, A. Polyakov, C.M. Scoby, K. Thompson, W. Wan, H.A. Padmore, P. Musumeci, Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode. Phys. Rev. Lett. 110, 074801 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.MTA “Lendület” Ultrafast Nanooptics GroupWigner Research Centre for PhysicsBudapestHungary

Personalised recommendations