Advertisement

Photoionization Time Delays

  • J. Marcus Dahlström
  • Morgane Vacher
  • Alfred Maquet
  • Jérémie Caillat
  • Stefan HaesslerEmail author
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 86)

Abstract

The material presented in this chapter is based on important advances realized in “attophysics” which make feasible to follow the motion of electrons in atoms and molecules with attosecond-level time resolution. In this context, time-delays have been recently determined in the process of photoionization by extreme-ultra-violet (XUV) pulses and the question of the significance of these measured delays arises. As we shall outline here, numerical experiments show that they are intimately related to the structure of the ionized species’ continuous spectrum. Another point addressed here is that, in experiments, the measurements have the common characteristic to be performed in the presence of an auxiliary infra-red (IR) field, used to “clock” the timing of the process. This implies to adapt the theory treatment to handle such “two-color” photoionization processes. We review a systematic analysis of these features that are characteristic of this class of electronic transitions, when viewed in the time domain.

Keywords

Wave Packet Attosecond Pulse Scatter Phase Shift Photoionization Process Electron Wave Packet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge that elements of this chapter are reproduced from [13, 63].

References

  1. 1.
    P. Agostini, L.F. DiMauro, Rep. Progr. Phys. 67(6), 813 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    P.B. Corkum, F. Krausz, Nat. Phys. 3(6), 381 (2007)CrossRefGoogle Scholar
  3. 3.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81(1), 163 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    F. Lepine, M.Y. Ivanov, M.J.J. Vrakking, Nat. Phot. 8(3), 195 (2014)CrossRefGoogle Scholar
  5. 5.
    S.R. Leone, C.W. McCurdy, J. Burgdorfer, L.S. Cederbaum, Z. Chang, N. Dudovich, J. Feist, C.H. Greene, M. Ivanov, R. Kienberger, U. Keller, M.F. Kling, Z. Loh, T. Pfeifer, A.N. Pfeiffer, R. Santra, A. Schafer, K. Stolow, U. Thumm, M.J.J. Vrakking, Nat. Phot. 8(3), 162 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Cavalieri, N. Müller, T. Uphues, V. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel et al., Nature 449(7165), 1029 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    S. Haessler, B. Fabre, J. Higuet, J. Caillat, T. Ruchon, P. Breger, B. Carré, E. Constant, A. Maquet, E. Mével et al., Phys. Rev. A 80(1), 011404 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    M. Swoboda, T. Fordell, K. Klünder, J. Dahlström, M. Miranda, C. Buth, K. Schafer, J. Mauritsson, A. L’Huillier, M. Gisselbrecht, Phys. Rev. Lett. 104(10), 103003 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. Cavalieri, Y. Komninos, T. Mercouris et al., Science 328(5986), 1658 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    K. Klünder, J. Dahlström, M. Gisselbrecht, T. Fordell, M. Swoboda, D. Guénot, P. Johnsson, J. Caillat, J. Mauritsson, A. Maquet et al., Phys. Rev. Lett. 106(14), 143002 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Neppl, R. Ernstorfer, E.M. Bothschafter, A.L. Cavalieri, D. Menzel, J.V. Barth, F. Krausz, R. Kienberger, P. Feulner, Phys. Rev. Lett. 109, 087401 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    D. Guénot, K. Klünder, C. Arnold, D. Kroon, J. Dahlström, M. Miranda, T. Fordell, M. Gisselbrecht, P. Johnsson, J. Mauritsson et al., Phys. Rev. A 85(5), 053424 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    J. Dahlström, A. L’Huillier, A. Maquet, J. Phys. B 45(18), 183001 (2012)CrossRefGoogle Scholar
  14. 14.
    R. Pazourek, S. Nagele, J. Burgdörfer, Faraday Discuss. 163, 353 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger et al., Science 320(5883), 1614 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    D.H. Ko, K.T. Kim, J. Park, J.H. Lee, C.H. Nam, New J. Phys. 12(6), 063008 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nature 419(6909), 803 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    L. Argenti, C. Ott, T. Pfeifer, F. Martín, J. Phys.: Conference Series 488(3), 032030 (2014)Google Scholar
  19. 19.
    C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C.H. Keitel, C.H. Greene, T. Pfeifer, Science 340(6133), 716 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    E.P. Wigner, Phys. Rev. 98, 145 (1955)MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. 21.
    F.T. Smith, Phys. Rev. 118(1), 349 (1960)MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. 22.
    C.A. de Carvalho, H.M. Nussenzveig, Phys. Rep. 364(2), 83 (2002)MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. 23.
    D.J. Tannor, Introduction to Quantum Mechanics—A Time-Dependent Perspective (University Science Books, Sausalito CA, 2007)Google Scholar
  24. 24.
    P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H.G. Muller, P. Agostini, Science 292(5522), 1689 (2001)Google Scholar
  25. 25.
    Y. Mairesse, A. de Bohan, L.J. Frasinski, H. Merdji, L.C. Dinu, P. Monchicourt, P. Breger, M. Kovacev, R. Taïeb, B. Carré, H.G. Muller, P. Agostini, P. Salières, Science 302(5650), 1540 (2003)Google Scholar
  26. 26.
    Y. Mairesse, F. Quéré, Phys. Rev. A 71(1), 011401 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    H. Park, R.N. Zare, J. Chem. Phys. 104, 4554 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    M. Amusia, Atomic Photoeffect (Plenum Press, New York, 1990)CrossRefGoogle Scholar
  29. 29.
    M. Vacher, A. Maquet, R. Taïeb, J. Caillat (in preparation)Google Scholar
  30. 30.
    F. Gel’mukhanov, H. Ågren, Phys. Rep. 312, 87–330 (1999)Google Scholar
  31. 31.
    H.G. Muller, Appl. Phys. B 74(1), s17 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    W. Boutu, S. Haessler, H. Merdji, P. Breger, G. Waters, M. Stankiewics, L.J. Frasinski, R. Taïeb, J. Caillat, A. Maquet, P. Monchicourt, B. Carré, P. Salières, Nat. Phys. 4, 545 (2008)CrossRefGoogle Scholar
  33. 33.
    S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T. Ruchon, T. Auguste, Z. Diveki, P. Breger, A. Maquet, B. Carré et al., Nat. Phys. 6(3), 200 (2010)CrossRefGoogle Scholar
  34. 34.
    J. Caillat, A. Maquet, S. Haessler, B. Fabre, T. Ruchon, P. Salières, Y. Mairesse, R. Taïeb, Phys. Rev. Lett. 106(9), 093002 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    J. Dahlström, A. L’Huillier, J. Mauritsson, J. Phys. B 44(9), 095602 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    J.M. Dahlström, D. Guénot, K. Klünder, M. Gisselbrecht, J. Mauritsson, A. L’Huillier, R. Taïeb, Chem. Phys. 414, 53 (2013)Google Scholar
  37. 37.
    J.M. Dahlström, T. Carette, E. Lindroth, Phys. Rev. A 86, 061402 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    C.H. Zhang, U. Thumm, Phys. Rev. A 82(4), 043405 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    R. Gaillac, M. Vacher, A. Maquet, R. Taïeb, J. Caillat, Attosecond photoemission dynamics encoded in real-valued continuum wave-functions, submitted (2015)Google Scholar
  40. 40.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007)Google Scholar
  41. 41.
    K.C. Kulander, K.J. Schafer, J.L. Krause, Atoms in Intense Laser Fields (Academic Press Inc, United States, 1992)Google Scholar
  42. 42.
    P. Kruit, F. Read, J. Phys. E: Sci. Instrum. 16(4), 313 (1983)ADSCrossRefGoogle Scholar
  43. 43.
    A.T. Eppink, D.H. Parker, Rev. Sci. Instrum. 68(9), 3477 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    J. Itatani, F. Quéré, G.L. Yudin, M.Y. Ivanov, F. Krausz, P.B. Corkum, Phys. Rev. Lett. 88(17), 173903 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    F. Quéré, Y. Mairesse, J. Itatani, J. Mod. Opt. 52(2), 339 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    R. Pazourek, J. Feist, S. Nagele, J. Burgdörfer, Phys. Rev. Lett. 108, 163001 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    M. Chini, S. Gilbertson, S.D. Khan, Z. Chang, Opt. Expr. 18(12), 13006 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    V. Véniard, R. Taïeb, A. Maquet, Phys. Rev. A 54(1), 721 (1996)ADSCrossRefGoogle Scholar
  49. 49.
    S. Nagele, R. Pazourek, J. Feist, K. Doblhoff-Dier, C. Lemell, K. Tőkési, J. Burgdörfer, J. Phys. B 44(8), 081001 (2011)Google Scholar
  50. 50.
    S. Nagele, R. Pazourek, J. Feist, J. Burgdörfer, Phys. Rev. A 85(3), 033401 (2012)Google Scholar
  51. 51.
    T. Carette, J.M. Dahlström, L. Argenti, E. Lindroth, Phys. Rev. A 87, 023420 (2013)Google Scholar
  52. 52.
    L.B. Madsen, Am. J. Phys. 73(1), 57 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    A. Maquet, R. Taïeb, J. Mod. Opt. 54(13–15), 1847 (2007)Google Scholar
  54. 54.
    A.J. Galn, L. Argenti, F. Martín, New J. Phys. 15(11), 113009 (2013)Google Scholar
  55. 55.
    V.S. Yakovlev, J. Gagnon, N. Karpowicz, F. Krausz, Phys. Rev. Lett. 105(7), 073001 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    C.H. Zhang, U. Thumm, Phys. Rev. A 84(3), 033401 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    O. Smirnova, M. Spanner, M.Y. Ivanov, J. Phys. B 39(13), S323 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    M. Ivanov, O. Smirnova, Phys. Rev. Lett. 107(21), 213605 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    Q.C. Ning, L.Y. Peng, S.N. Song, W.C. Jiang, S. Nagele, R. Pazourek, J. Burgdörfer, Q. Gong, Phys. Rev. A 90, 013423 (2014)Google Scholar
  60. 60.
    J. Samson, W. Stolte, J. Electron. Spectrosc. Relat. Phenom. 123(23), 265 (2002)CrossRefGoogle Scholar
  61. 61.
    B. Möbus, B. Magel, K.H. Schartner, B. Langer, U. Becker, M. Wildberger, H. Schmoranzer, Phys. Rev. A 47, 3888 (1993)Google Scholar
  62. 62.
    H.G. Muller, Phys. Rev. A 60, 1341 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    J.M. Dahlström, E. Lindroth, J. Phys. B 47(12), 124012 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    J.W. Cooper, Phys. Rev. 128(2), 681 (1962)ADSCrossRefGoogle Scholar
  65. 65.
    M. Amusia, V. Ivanov, N. Cherepkov, L. Chernysheva, Phys. Lett. A 40(5), 361 (1972)ADSCrossRefGoogle Scholar
  66. 66.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Non-Relativistic Theory) (Pergamon Press, Oxford, 1965)zbMATHGoogle Scholar
  67. 67.
    K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer, New York, 1989)CrossRefzbMATHGoogle Scholar
  68. 68.
    A. Kheifets, I. Ivanov, Phys. Rev. Lett. 105(23), 233002 (2010)Google Scholar
  69. 69.
    A.S. Kheifets, Phys. Rev. A 87, 063404 (2013)Google Scholar
  70. 70.
    G. Dixit, H.S. Chakraborty, M.E.A. Madjet, Phys. Rev. Lett. 111, 203003 (2013)ADSCrossRefGoogle Scholar
  71. 71.
    L. Moore, M. Lysaght, J. Parker, H. van der Hart, K. Taylor, Phys. Rev. A 84(6), 061404 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    S. Nagele, R. Pazourek, J. Feist, J. Burgdörfer, Phys. Rev. A 85, 033401 (2012)ADSCrossRefGoogle Scholar
  73. 73.
    J. Feist, O. Zatsarinny, S. Nagele, R. Pazourek, J. Burgdörfer, X. Guan, K. Bartschat, B.I. Schneider, Phys. Rev. A 89, 033417 (2014)ADSCrossRefGoogle Scholar
  74. 74.
    E.P. Mansson, D. Guenot, C.L. Arnold, D. Kroon, S. Kasper, J.M. Dahlstrom, E. Lindroth, A.S. Kheifets, A. L’Huillier, S.L. Sorensen, M. Gisselbrecht, Nature Phys. 10(3), 207 (2014)Google Scholar
  75. 75.
    D.J. Kennedy, S.T. Manson, Phys. Rev. A 5(1), 227 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. Marcus Dahlström
    • 1
    • 2
  • Morgane Vacher
    • 3
  • Alfred Maquet
    • 4
    • 5
  • Jérémie Caillat
    • 4
    • 5
  • Stefan Haessler
    • 6
    • 7
    Email author
  1. 1.Department of PhysicsStockholm University, AlbaNova University CenterStockholmSweden
  2. 2.Max-Planck Institute for the Physics of Complex SystemsDresdenGermany
  3. 3.Department of ChemistryImperial College LondonLondonUnited Kingdom
  4. 4.UPMC, UMR 7614Laboratoire de Chimie Physique - Matière et Rayonnement 11Paris Cedex 05France
  5. 5.CNRS, UMR 7614Laboratoire de Chimie Physique - Matière et Rayonnement 11Paris Cedex 05France
  6. 6.Photonics InstituteVienna University of TechnologyViennaAustria
  7. 7.LOAENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-SaclayPalaiseau CedexFrance

Personalised recommendations