Controlling Atomic Photoabsorption by Intense Lasers in the Attosecond Time Domain

  • Xiao-Min TongEmail author
  • Nobuyuki Toshima
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 86)


In this chapter, we introduce the recent developments on the infrared (IR) laser assisted photoionization and photoabsorption experiments and the theories briefly, then present a detailed theoretical method to simulate the IR assisted dynamics by a single attosecond pulse or an attosecond pulse train in the extreme ultraviolet (xuv) regime. The key steps to understand IR assisted atomic photoabsorption processes are (1) the IR laser field modifies an atomic excited and continuum state as a dressed state or Floquet state, (2) the xuv pulse excites the atomic ground state to a Floquet state through different Floquet components. The interference between the transitions to a Floquet state through different components plays the center role to understand the oscillatory structures or control the dynamics of IR assisted photoabsorption processes. Two examples, IR assisted photoionization and photoexcitation of H atoms by xuv pulses, are presented. Existed and possible future applications are also discussed.


Ionization Yield Attosecond Pulse Excitation Probability Floquet State Attosecond Pulse Train 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This works was supported by a Grand-in-Aid for Scientific Research (C24540421) from the Japan Society for the Promotion of Science and part of the simulations was supported by HA-PACS Project for advanced interdisciplinary computational sciences by exa-scale computing technology.


  1. 1.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    A.H. Zewail, Science 242, 1645 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    A.H. Zewail, J. Phys. Chem. A 104, 5660 (2000)CrossRefGoogle Scholar
  4. 4.
    P. Ranitovic, C.W. Hogle, P. Rivire, A. Palacios, X.M. Tong, N. Toshima, A. Gonzlez-Castrillo, L. Martin, F. Martn, M.M. Murnane, H. Kapteyn, Proc. Natl. Acad. Sci. U.S.A. 111, 912 (2014)Google Scholar
  5. 5.
    D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Science 288, 635 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    S.T. Cundiff, J. Ye, Rev. Mod. Phys. 75, 325 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    G. Sansone, C. Vozzi, S. Stagira, M. Pascolini, L. Poletto, P. Villoresi, G. Tondello, S.D. Silvestri, M. Nisoli, Phys. Rev. Lett. 92, 113904 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    T. Wittmann, B. Horvath, W. Helml, M.G. Schätzel, X. Gu, A.L. Cavalieri, G.G. Paulus, R. Kienberger, Nature Physics 5, 357 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    G.G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, S.D. Silvestri, Nature 414, 182 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    G.G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, F. Krausz, Phys. Rev. Lett. 91, 253004 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    X.M. Tong, K. Hino, N. Toshima, Phys. Rev. A 74, 031405 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    V. Roudnev, B.D. Esry, I. Ben-Itzhak, Phys. Rev. Lett. 93, 163601 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    M.F. Kling, C. Siedschlag, A.J. Verhoef, J.I. Khan, M. Schultze, T. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, M.J.J. Vrakking, Science 312, 246 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    X.M. Tong, C.D. Lin, J. Phys. B 40, 641 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    X.M. Tong, C.D. Lin, Phys. Rev. Lett. 98, 123002 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    M. Kremer, B. Fischer, B. Feuerstein, V.L.B. de Jesus, V. Sharma, C. Hofrichter, A. Rudenko, U. Thumm, C.D. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 103, 213003 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    C. Lemell, X.M. Tong, F. Krausz, J. Burgdorfer, Phys. Rev. Lett. 90, 076403 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    A. Apolonski, P. Dombi, G.G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T.W. Hansch, F. Krausz, Phys. Rev. Lett. 92, 073902 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J.V. Barth, R. Kienberger, R. Ernstorfer, V.S. Yakovlev, M.I. Stockman, F. Krausz, Nature 493, 70 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    H.S. Nguyen, A.D. Bandrauk, C.A. Ullrich, Phys. Rev. A 69, 063415 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    M. Muramatsu, M. Hita, S. Minemoto, H. Sakai, Phys. Rev. A 79, 011403 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    H. Li, D. Ray, S. De, I. Znakovskaya, W. Cao, G. Laurent, Z. Wang, M.F. Kling, A.T. Le, C.L. Cocke, Phys. Rev. A 84, 043429 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    X. Xie, S. Roither, D. Kartashov, E. Persson, D.G. Arbó, L. Zhang, S. Gräfe, M.S. Schöffler, J. Burgdörfer, A. Baltuška, M. Kitzler, Phys. Rev. Lett. 108, 193004 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J. Wu, A. Vredenborg, L.P.H. Schmidt, T. Jahnke, A. Czasch, R. Dörner, Phys. Rev. A 87, 023406 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    R. Kienberger, M. Hentschel, M. Uiberacker, C. Spielmann, M. Kitzler, A. Scrinzi, M. Wieland, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Science 297, 1144 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Science 305, 1267 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli, Science 314, 443 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    P. Johnsson, J. Mauritsson, T. Remetter, A. L’Huillier, K.J. Schafer, Phys. Rev. Lett. 99, 233001 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    P. Ranitovic, X.M. Tong, B. Gramkow, S. De, B. DePaola, K.P. Singh, W. Cao, M. Magrakvelidze, D. Ray, I. Bocharova, H. Mashiko, A. Sandhu, E. Gagnon, M.M. Murnane, H. Kapteyn, I. Litvinyuk, C.L. Cocke, New J. Phys. 12, 013008 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    C. Neidel, J. Klei, C.H. Yang, A. Rouzée, M.J.J. Vrakking, K. Klünder, M. Miranda, C.L. Arnold, T. Fordell, A. L’Huillier, M. Gisselbrecht, P. Johnsson, M.P. Dinh, E. Suraud, P.G. Reinhard, V. Despré, M.A.L. Marques, F. Lépine, Phys. Rev. Lett. 111, 033001 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    E. Goulielmakis, Z.H. Loh, A. Wirth, R. Santra, N. Rohringer, V.S. Yakovlev, S. Zherebtsov, T. Pfeifer, A.M. Azzeer, M.F. Kling et al., Nature 466, 739 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    H. Wang, M. Chini, S. Chen, C.H. Zhang, F. He, Y. Cheng, Y. Wu, U. Thumm, Z. Chang, Phys. Rev. Lett. 105, 143002 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    M. Chini, X.W. Wang, Y. Cheng, Y. Wu, D. Zhao, D.A. Telnov, S.I. Chu, Z.H. Chang, Sci. Rep. 3, 1105 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    X. Wang, M. Chini, Y. Cheng, Y. Wu, X.M. Tong, Z. Chang, Phys. Rev. A 87, 063413 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    N. Shivaram, H. Timmers, X.M. Tong, A. Sandhu, Phys. Rev. A 85, 051802 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    N. Shivaram, H. Timmers, X.M. Tong, A. Sandhu, Phys. Rev. Lett. 108, 193002 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    E.P. Wigner, Phys. Rev. 98, 145 (1955)MathSciNetADSCrossRefzbMATHGoogle Scholar
  38. 38.
    M. Schultze, M. Fiess, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A.L. Cavalieri, Y. Komninos, T. Mercouris, C.A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdoerfer, A.M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, V.S. Yakovlev, Science 328, 1658 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    P. Ranitovic, X.M. Tong, C.W. Hogle, X. Zhou, Y. Liu, N. Toshima, M.M. Murnane, H.C. Kapteyn, Phys. Rev. Lett. 106, 193008 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    X.M. Tong, C.D. Lin, Phys. Rev. A 73, 042716 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    T. Shirahama, X.M. Tong, K.I. Hino, N. Toshima, Phys. Rev. A 80, 043414 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    R. Santra, V.S. Yakovlev, T. Pfeifer, Z.H. Loh, Phys. Rev. A 83, 033405 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    S. Chen, M.J. Bell, A.R. Beck, H. Mashiko, M. Wu, A.N. Pfeiffer, M.B. Gaarde, D.M. Neumark, S.R. Leone, K.J. Schafer, Phys. Rev. A 86, 063408 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    M. Murakami, S.I. Chu, Phys. Rev. A 88, 043428 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    X.M. Tong, S.I. Chu, Phys. Rev. A 55, 3406 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    X.M. Tong, C.D. Lin, J. Phys. B 38, 2593 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    X.M. Tong, K. Hino, N. Toshima, Phys. Rev. Lett. 97, 243202 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    X.M. Tong, K. Hino, N. Toshima, Phys. Rev. Lett. 101, 163201 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    X.M. Tong, N. Nakamura, S. Ohtani, T. Watanabe, N. Toshima, Phys. Rev. A 80, 042502 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    S.I. Chu, D.A. Telnov, Phys. Rep. 390, 1 (2004)MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    X.M. Tong, S.I. Chu, Chem. Phys. 217, 119 (1997)ADSCrossRefGoogle Scholar
  52. 52.
    J. Bauer, J. Phys. B 34, 1343 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    D.G. Arbó, J.E. Miraglia, M.S. Gravielle, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 77, 013401 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    K.L. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 79, 033411 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    X.M. Tong, P. Ronitovic, C.L. Cocke, N. Toshima, Phys. Rev. A 81, 021404 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    X.M. Tong, P. Ranitovic, D.D. Hickstein, M.M. Murnane, H.C. Kapteyn, N. Toshima, Phys. Rev. A 88, 013410 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    X.M. Tong, S.I. Chu, Phys. Rev. A 61, 031401 (2000)ADSCrossRefGoogle Scholar
  58. 58.
    X.M. Tong, N. Toshima, Phys. Rev. A 81, 043429 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    F. He, C. Ruiz, A. Becker, U. Thumm, J. Phys. B 44, 211001 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M.E. Geusic, Phys. Rev. Lett. 59, 1092 (1987)ADSCrossRefGoogle Scholar
  61. 61.
    J.G. Wang, T. Kato, I. Murakami, Phys. Rev. A 60, 3750 (1999)ADSCrossRefGoogle Scholar
  62. 62.
    M.H. Xu, L.Y. Peng, Z. Zhang, Q. Gong, X.M. Tong, E.A. Pronin, A.F. Starace, Phys. Rev. Lett. 107, 183001 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    D.D. Hickstein, P. Ranitovic, S. Witte, X.M. Tong, Y. Huismans, P. Arpin, X. Zhou, K.E. Keister, C.W. Hogle, B. Zhang, C. Ding, P. Johnsson, N. Toshima, M.J.J. Vrakking, M.M. Murnane, H.C. Kapteyn, Phys. Rev. Lett. 109, 073004 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    W. Cao, G. Laurent, S. De, M. Schöffler, T. Jahnke, A.S. Alnaser, I.A. Bocharova, C. Stuck, D. Ray, M.F. Kling, I. Ben-Itzhak, T. Weber, A.L. Landers, A. Belkacem, R. Dörner, A.E. Orel, T.N. Rescigno, C.L. Cocke, Phys. Rev. A 84, 053406 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Materials Science, Faculty of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Center for Computational SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations