Skip to main content

Control of Ultrafast Electron Dynamics with Shaped Femtosecond Laser Pulses: From Atoms to Solids

  • Chapter
  • First Online:
Ultrafast Dynamics Driven by Intense Light Pulses

Abstract

In this chapter, we present an introduction to the fundamentals of femtosecond pulse shaping and review recent demonstrations of coherent control by pulse tailoring. We portray control of three-dimensional free-electron wave packets, strong-field control by selective population of dressed states (SPODS) and control of ionization processes in dielectrics. Prototypical spectral phase masks such as polynomial- and sinusoidal functions are discussed and concepts of polarization shaping such as the instantaneous frequency and the instantaneous polarization state are introduced and illustrated on representative examples. In addition, experiments on coherent control are reviewed. Coherence transfer from light to matter is studied on the interference of free-electron wave packets. We analyze control and adaptive optimization of three-dimensional designer free-electron wave packets by polarization shaping. Strong-field control via SPODS is introduced and elucidated on specific realizations via rapid adiabatic passage and photon locking. This concept is extended to strong-field control of the concerted electron-nuclear dynamics in molecules. Finally, we present recent experiments on control of ionization processes in dielectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.A. Rice, M. Zhao, in Optical Control of Molecular Dynamics (Wiley, New York, 2000)

    Google Scholar 

  2. M. Shapiro, P. Brumer, in Principles of the Quantum Control of Molecular Processes, 1st edn. Wiley, Hoboken, 2003)

    Google Scholar 

  3. D. Tannor, in Introduction to Quantum Mechanics: A Time-Dependent Perspective (Palgrave Macmillan Publishers Limited, Houndmills, Basingstoke, Hampshire, RG21 6XS, England, 2007)

    Google Scholar 

  4. D.J. Tannor, S.A. Rice, Adv. Chem. Phys. 70, 441 (1988)

    Google Scholar 

  5. M. Shapiro, P. Brumer, Int. Rev. Phys. Chem. 13, 187 (1994)

    Google Scholar 

  6. T. Baumert, J. Helbing, G. Gerber, in Advances in Chemical Physics—Photochemistry: Chemical Reactions and Their Control on the Femtosecond Time Scale, ed. by I. Prigogine, S.A. Rice (Wiley, New York, 1997)

    Google Scholar 

  7. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, Science 288, 824 (2000)

    ADS  Google Scholar 

  8. M. Shapiro, P. Brumer, Rep. Prog. Phys. 66, 859 (2003)

    ADS  Google Scholar 

  9. D. Goswami, Phys. Rep. 374, 385 (2003)

    ADS  Google Scholar 

  10. M. Dantus, V.V. Lozovoy, Chem. Rev. 104, 1813 (2004)

    Google Scholar 

  11. V. Bonacic-Koutecky, R. Mitric, Chem. Rev. 105, 11 (2005)

    Google Scholar 

  12. T. Brixner et al., in Femtosecond Laser Spectroscopy, ed. by P. Hannaford (Springer, Berlin, 2005), Chap. 9

    Google Scholar 

  13. M. Wollenhaupt, V. Engel, T. Baumert, Ann. Rev. Phys. Chem. 56, 25 (2005)

    ADS  Google Scholar 

  14. P. Nuernberger, G. Vogt, T. Brixner, G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007)

    Google Scholar 

  15. J. Werschnik, E.K.U. Gross, J. Phys. B 40, R175–R211 (2007)

    MathSciNet  ADS  Google Scholar 

  16. W. Wohlleben, T. Buckup, J.L. Herek, M. Motzkus, Chem. Phys. Chem. 6, 850 (2005)

    Google Scholar 

  17. Y. Silberberg, Ann. Rev. Phys. Chem. 60, 277 (2009)

    ADS  Google Scholar 

  18. K. Ohmori, Ann. Rev. Phys. Chem. 60, 487 (2009)

    ADS  Google Scholar 

  19. C. Brif, R. Chakrabarti, H. Rabitz, New. J. Phys. 12, 075008 (2010)

    ADS  Google Scholar 

  20. R. Stoian, M. Wollenhaupt, T. Baumert, I.V. Hertel, in Laser Precision Microfabrication, ed. by K. Sugioka, M. Meunier, A. Piqué (Springer, Berlin Heidelberg, 2010), Chap. 5

    Google Scholar 

  21. M. Wollenhaupt, T. Baumert, Faraday Discuss. 153, 9 (2011)

    ADS  Google Scholar 

  22. M. Wollenhaupt, C. Lux, M. Krug, T. Baumert, Chem. Phys. Chem. 14, 1341 (2013)

    Google Scholar 

  23. S. Thallmair et al. in Molecular Quantum Dynamics: From Theory to Applications, ed. by F. Gatti (Springer, Heidelberg, 2014)

    Google Scholar 

  24. P. Gaspard, I. Burghardt (eds.), (Wiley, New York, 1997), Chap. 101

    Google Scholar 

  25. J.L. Herek, J. Photochem. Photobiol. A 180, 225 (2006)

    Google Scholar 

  26. H. Fielding, M. Shapiro, T. Baumert, J. Phys. B 41, 070201-1 (2008)

    Google Scholar 

  27. H. Rabitz, New J. Phys. 11, 105030 (2009)

    MathSciNet  ADS  Google Scholar 

  28. H.H. Fielding, M.A. Robb, Phys. Chem. Chem. Phys. 12, 15569 (2010)

    Google Scholar 

  29. H. Braun et al., J. Phys. B 47, 124015 (2014)

    ADS  Google Scholar 

  30. M. Wollenhaupt, A. Assion, T. Baumert, in Springer Handbook of Lasers and Optics, 2nd edn., ed. F. Träger (Springer, Dordrecht, Heidelberg, London, New York, 2012), Chap. 12

    Google Scholar 

  31. A. Monmayrant, S. Weber, B. Chatel, J. Phys. B : At. Mol. Opt. Phys. 43, 103001-34 (2010)

    ADS  MATH  Google Scholar 

  32. J. Schneider et al., Phys. Chem. Chem. Phys. 13, 8733 (2011)

    Google Scholar 

  33. A. Galler, T. Feurer, Appl. Phys. B. 90, 427 (2008)

    ADS  Google Scholar 

  34. B. von Vacano, T. Buckup, M. Motzkus, J. Opt. Soc. Am. B 24, 1091 (2007)

    ADS  Google Scholar 

  35. J. Köhler et al., Opt. Express 19, 11638 (2011)

    ADS  Google Scholar 

  36. R. Bracewell, in The Fourier Transform and Its Applications , 3rd edn. (McGraw-Hill Higher Education, Singapore, 2000)

    Google Scholar 

  37. L. Allen, J.H. Eberly, in Optical Resonance and Two-Level Atoms , 2nd edn. (Dover Publications, New York, 1987)

    Google Scholar 

  38. N. Dudovich, T. Polack, A. Péer, Y. Silberberg, Phys. Rev. Lett. 94, 083002-4 (2005)

    ADS  MATH  Google Scholar 

  39. M. Wollenhaupt et al., Phys. Rev. A 73, 063409-15 (2006)

    ADS  Google Scholar 

  40. T. Bayer, M. Wollenhaupt, T. Baumert, J. Phys. B. 41, 074007-13 (2008)

    ADS  Google Scholar 

  41. L. Cohen, in Time-Frequency Analysis (Prentice Hall PTR, New Jersey, 1995)

    Google Scholar 

  42. E. Sorokin, G. Tempea, T. Brabec, JOSA B 17, 146 (2000)

    ADS  Google Scholar 

  43. A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, T. Baumert, Phys. Rev. A 70, 063407-10 (2004)

    ADS  MATH  Google Scholar 

  44. H.R. Telle et al., Appl. Phys. B 69, 327 (1999)

    ADS  Google Scholar 

  45. F.W. Helbing et al., Appl. Phys. B 74, 35 (2002)

    ADS  Google Scholar 

  46. A. Apolonski et al., Phys. Rev. Lett. 92, 073902-4 (2004)

    ADS  Google Scholar 

  47. G. Sansone et al., Phys. Rev. A 73, 053408 (2006)

    ADS  Google Scholar 

  48. M.F. Kling et al., New J. Phys. 10, 025024-17 (2008)

    ADS  Google Scholar 

  49. G. Cerullo, A. Baltuska, O.D. Mucke, C. Vozzi, Laser Photonics Rev. 5, 323 (2011)

    Google Scholar 

  50. B. Broers, L.D. Noordam, H.B. van Linden van den Heuvell, Phys. Rev. A 46, 2749 (1992)

    Google Scholar 

  51. C.J. Bardeen, Q. Wang, C.V. Shank, Phys. Rev. Lett. 75, 3410 (1995)

    ADS  Google Scholar 

  52. A. Assion et al., Chem. Phys. Lett. 259, 488 (1996)

    ADS  Google Scholar 

  53. J. Degert et al., Phys. Rev. Lett. 89, 203003–203003-4 (2002)

    Google Scholar 

  54. M. Wollenhaupt et al., Appl. Phys. B 82, 183 (2006)

    ADS  Google Scholar 

  55. P. Nuernberger, Opt. Commun. 282, 227 (2009)

    ADS  Google Scholar 

  56. M. Krug et al., New J. Phys. 11, 105051 (2009)

    ADS  MATH  Google Scholar 

  57. J.D. McMullen, JOSA 67, 1575 (1977)

    ADS  Google Scholar 

  58. L. Englert et al., Opt. Express 15, 17855 (2007)

    ADS  Google Scholar 

  59. L. Englert et al., Appl. Phys. A 92, 749 (2008)

    ADS  Google Scholar 

  60. N.T. Form, B.J. Whitaker, C. Meier, J. Phys. B : At. Mol. Opt. Phys. 41, 074011 (2008)

    ADS  Google Scholar 

  61. M. Ruge et al., J. Phys. Chem. C 117, 11780 (2013)

    Google Scholar 

  62. D. Meshulach, Y. Silberberg, Nature 396, 239 (1998)

    ADS  Google Scholar 

  63. M. Wollenhaupt et al., J. Mod. Opt. 52, 2187 (2005)

    ADS  Google Scholar 

  64. A. Bartelt et al., Phys. Chem. Chem. Phys. 5, 3610 (2003)

    MATH  Google Scholar 

  65. V.V. Lozovoy, I. Pastirk, A. Walowicz, M. Dantus, J. Chem. Phys. 118, 3187 (2003)

    ADS  Google Scholar 

  66. M. Wollenhaupt, T. Baumert, J. Photochem. Photobiol. A 180, 248 (2006)

    Google Scholar 

  67. M. Wollenhaupt et al., Chem. Phys. Lett. 419, 184 (2006)

    ADS  Google Scholar 

  68. J.L. Herek et al., Nature 417, 533 (2002)

    ADS  Google Scholar 

  69. T. Bayer et al., Phys. Rev. Lett. 110, 123003 (2013)

    ADS  Google Scholar 

  70. N. Dudovich, D. Oron, Y. Silberberg, J. Chem. Phys. 118, 9208 (2003)

    ADS  Google Scholar 

  71. J. Voll, R. Vivie-Riedle, New J. Phys. 11, 105036 (2009)

    ADS  Google Scholar 

  72. J. Hauer, T. Buckup, M. Motzkus, J. Chem. Phys. 125, 061101-3 (2006)

    ADS  Google Scholar 

  73. T. Brixner, G. Gerber, Opt. Lett. 26, 557 (2001)

    ADS  Google Scholar 

  74. N. Dudovich, D. Oron, Y. Silberberg, Phys. Rev. Lett. 92, 103003-4 (2004)

    ADS  Google Scholar 

  75. T. Brixner et al., Phys. Rev. Lett. 92, 208301-4 (2004)

    ADS  Google Scholar 

  76. M. Wollenhaupt et al., Appl. Phys. B 95, 245 (2009)

    ADS  Google Scholar 

  77. F. Weise, G. Achazi, A. Lindinger, Phys. Chem.Chem. Phys. 13, 8621 (2011)

    Google Scholar 

  78. M. Aeschlimann et al., Nature 446, 301 (2007)

    ADS  MATH  Google Scholar 

  79. P. Schön et al., Phys. Rev. A 81, 013809 (2010)

    ADS  Google Scholar 

  80. R. Selle et al., Opt. Lett. 33, 803 (2008)

    ADS  MATH  Google Scholar 

  81. A.M. Weiner, Rev. Sci. Instr. 71, 1929 (2000)

    ADS  Google Scholar 

  82. A. Präkelt et al., Rev. Sci. Instr. 74, 4950 (2003)

    ADS  Google Scholar 

  83. D.B. Strasfeld, S.-H. Shim, M.T. Zanni, Adv. Chem. Phys. 141, 1 (2009)

    Google Scholar 

  84. T. Hornung, R. Meier, M. Motzkus, Chem. Phys. Lett. 326, 445 (2000)

    ADS  Google Scholar 

  85. S. Fechner et al., Opt. Express 15, 15387 (2007)

    ADS  Google Scholar 

  86. S. Ruetzel et al., Phys. Chem. Chem. Phys. 13, 8627 (2011)

    Google Scholar 

  87. R.S. Judson, H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992)

    ADS  MATH  Google Scholar 

  88. T. Baumert et al., Appl. Phys. B 65, 779 (1997)

    ADS  Google Scholar 

  89. D. Meshulach, D. Yelin, Y. Silberberg, Opt. Commun. 138, 345 (1997)

    ADS  Google Scholar 

  90. C.J. Bardeen et al., Chem. Phys. Lett. 280, 151 (1997)

    ADS  Google Scholar 

  91. A. Assion et al., Science 282, 919 (1998)

    ADS  Google Scholar 

  92. R.J. Levis, H.A. Rabitz, J. Phys. Chem. A 106, 6427 (2002)

    Google Scholar 

  93. C. Daniel et al., Science 299, 536 (2003)

    ADS  Google Scholar 

  94. D. Yelin, D. Meshulach, Y. Silberberg, Opt. Lett. 22, 1793 (1997)

    ADS  Google Scholar 

  95. N. Hansen, in The CMA Evolution Strategy: A Tutorial (2009)

    Google Scholar 

  96. J.W. Wilson et al., Rev. Sci. Instrum. 79, 033103-5 (2008)

    ADS  Google Scholar 

  97. M. Wollenhaupt et al., Phys. Rev. Lett. 89, 173001-4 (2002)

    ADS  Google Scholar 

  98. F. Lindner et al., Phys. Rev. Lett. 95, 040401-4 (2005)

    ADS  Google Scholar 

  99. M. Winter, M. Wollenhaupt, T. Baumert, Opt. Commun. 264, 285 (2006)

    ADS  MATH  Google Scholar 

  100. P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)

    MATH  Google Scholar 

  101. J. Mauritsson et al., Phys. Rev. Lett. 105, 053001 (2010)

    ADS  Google Scholar 

  102. M. Born, Phys. Bl 2, 49 (1955)

    ADS  Google Scholar 

  103. C. Cohen-Tannoudji, B. Diu, F. Laloe, in Quantum Mechanics, vol. 1. (Wiley, New York, 1977)

    Google Scholar 

  104. P. Brumer, M. Shapiro, Ann. Rev. Phys. Chem. 43, 257 (1992)

    ADS  Google Scholar 

  105. M. Wollenhaupt et al., J. Opt. B 7, S270–S276 (2005)

    ADS  Google Scholar 

  106. M. Wollenhaupt, M. Krug, T. Baumert, Phys. J. 11, 37 (2012)

    Google Scholar 

  107. P. Hockett, M. Wollenhaupt, C. Lux, T. Baumert, Phys. Rev. Lett. 112, 223001 (2014)

    ADS  Google Scholar 

  108. K.L. Reid, Mol. Phys. 110, 131 (2012)

    ADS  Google Scholar 

  109. M. Wollenhaupt et al., Appl. Phys. B 95, 647 (2009)

    ADS  Google Scholar 

  110. D.A. Malik et al., Phys. Rev. A 84, 043404–043404-5 (2011)

    Google Scholar 

  111. A. Vredenborg et al., Chem. Phys. Chem. 12, 1459 (2011)

    Google Scholar 

  112. J. Maurer et al., Phys. Rev. Lett. 109, 123001 (2012)

    ADS  Google Scholar 

  113. A.T.J.B. Eppink, D.H. Parker, Rev. Sci. Instr. 68, 3477 (1997)

    ADS  Google Scholar 

  114. B.J. Whitaker, in Imaging in Molecular Dyanmics—Technology and Applications, (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  115. G.A. Garcia, L. Nahon, I. Powis, Rev. Sci. Instr. 75, 4989 (2004)

    ADS  Google Scholar 

  116. A.C. Kak, M. Slaney, in Principles of Computerized Tomographic Imaging, (IEEE Press, New York, 1999)

    Google Scholar 

  117. C. Smeenk et al., J. Phys. B 42, 165402 (2009)

    ADS  Google Scholar 

  118. P. Hockett, M. Staniforth, K.L. Reid, Mol. Phys. 108, 1045 (2010)

    ADS  Google Scholar 

  119. T. Frohnmeyer, M. Hofmann, M. Strehle, T. Baumert, Chem. Phys. Lett. 312, 447 (1999)

    ADS  Google Scholar 

  120. C. Trallero-Herrero, J.L. Cohen, T. Weinacht, Phys. Rev. Lett. 96, 063603-4 (2006)

    ADS  Google Scholar 

  121. B.J. Sussman, D. Townsend, M.Y. Ivanov, A. Stolow, Science 314, 278 (2006)

    ADS  Google Scholar 

  122. U. Gaubatz et al., Chem. Phys. Lett. 149, 463 (1988)

    ADS  Google Scholar 

  123. N.V. Vitanov, T. Halfmann, B.W. Shore, K. Bergmann, Ann. Rev. Phys. Chem. 52, 763 (2001)

    ADS  Google Scholar 

  124. B. W. Shore, Acta Phys. Slovaca 58, 243 (2008)

    Google Scholar 

  125. E.T. Sleva, I.M. Xavier Jr, A.H. Zewail, JOSA B 3, 483 (1985)

    ADS  Google Scholar 

  126. Y.S. Bai, A.G. Yodh, T.W. Mossberg, Phys. Rev. Lett. 55, 1277 (1985)

    ADS  Google Scholar 

  127. R. Kosloff, A.D. Hammerich, D. Tannor, Phys. Rev. Lett. 69, 2172 (1992)

    ADS  MATH  Google Scholar 

  128. V.S. Malinovsky, C. Meier, D.J. Tannor, Chem. Phys. 221, 67 (1997)

    ADS  Google Scholar 

  129. S.R. Hartmann, E.L. Hahn, Phys. Rev. 128, 2053 (1962)

    ADS  Google Scholar 

  130. A. Abragam, in The Principles of Nuclear Magnetism, 13th edn. (Clarendon Press, Oxford, 1994) (Reprint)

    Google Scholar 

  131. S.H. Autler, C.H. Townes, Phys. Rev. 100, 703 (1955)

    ADS  Google Scholar 

  132. P. Balling, D.J. Maas, L.D. Noordam, Phys. Rev. A 50, 4276 (1994)

    ADS  Google Scholar 

  133. A.A. Rangelov et al., Phys. Rev. A 72, 053403-12 (2005)

    ADS  MATH  Google Scholar 

  134. J. Cao, C.J. Bardeen, K.R. Wilson, Phys. Rev. Lett. 80, 1406 (1998)

    ADS  Google Scholar 

  135. V.S. Malinovsky, J.L. Krause, Eur. Phys. J. D 14, 147 (2001)

    ADS  Google Scholar 

  136. M. Wollenhaupt et al., Phys. Rev. A 68, 015401-4 (2003)

    ADS  Google Scholar 

  137. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Appl. Phys. A 79, 767 (2004)

    ADS  Google Scholar 

  138. P. Balling, J. Schou, Rep. Prog. Phys. 76, 036502 (2013)

    ADS  Google Scholar 

  139. M. Wollenhaupt, L. Englert, A. Horn, T. Baumert, J. Laser Micro Nanoeng. 4, 144 (2009)

    Google Scholar 

  140. L. Englert et al., J. Laser Appl. 24, 042002–042002-5 (2012)

    Google Scholar 

  141. C. Sarpe-Tudoran et al., Appl Phys Lett 88, 261109–3 (2006)

    ADS  Google Scholar 

  142. C. Sarpe et al., New J. Phys. 14, 075021 (2012)

    ADS  Google Scholar 

  143. E. Tokunaga, A. Terasaki, T. Kobayashi, Opt. Lett. 17, 1131 (1992)

    ADS  Google Scholar 

  144. V.V. Temnov et al., Phys. Rev. Lett. 97, 237403 (2006)

    ADS  Google Scholar 

  145. A. Couairon et al., Phys. Rev. B 71, 125435-11 (2005)

    ADS  Google Scholar 

  146. Y.V. White et al., Opt. Express 16, 14411 (2008)

    ADS  Google Scholar 

  147. B. Delobelle, F. Courvoisier, P. Delobelle, Opt. Lasers Eng. 48, 616 (2009)

    Google Scholar 

  148. A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)

    ADS  Google Scholar 

  149. T. Fennel et al., Rev. Mod. Phys. 82, 1793 (2010)

    ADS  Google Scholar 

  150. F. Hubenthal et al., Appl. Phys. Lett. 95, 063101-3 (2009)

    ADS  Google Scholar 

  151. R. Morarescu et al., J. Mater. Chem. 21, 4076 (2011)

    Google Scholar 

  152. A.A. Jamali et al., Appl. Phys. A 110, 743 (2013)

    ADS  MATH  Google Scholar 

  153. J.D. Winefordner et al., J. Anal. At. Spectrom. 19, 1061 (2004)

    Google Scholar 

  154. E.L. Gurevich, R. Hergendorfer, Appl. Spectr. 61, 233A (2007)

    ADS  Google Scholar 

  155. J. Cheng et al., Opt. Laser Technol. 46, 88 (2013)

    ADS  Google Scholar 

  156. A. Assion et al., Appl. Phys. B 77, 391 (2003)

    ADS  Google Scholar 

  157. F. Dausinger, F. Lichtner, H. Lubatschowski (eds.), in Femtosecond Technology for Technical and Medical Applications, Topics in Applied Physics (Springer, Berlin Heidelberg, 2004)

    Google Scholar 

  158. W. Wessel et al., Eng. Fract. Mech. 77, 1874 (2010)

    Google Scholar 

  159. J. Mildner et al., Appl. Surf. Sci. 302, 291 (2014)

    ADS  Google Scholar 

Download references

Acknowledgments

We like to thank Dipl. Phys. Jens Köhler and M.Sc. Dominik Pengel for careful proofreading of the manuscript and Dr. Lars Englert for preparing the Figs. 4.24 and 4.25 for this review. Financial support by DFG via the project WO-848/3-1 and the priority program SPP 1327 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Wollenhaupt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wollenhaupt, M., Bayer, T., Baumert, T. (2016). Control of Ultrafast Electron Dynamics with Shaped Femtosecond Laser Pulses: From Atoms to Solids. In: Kitzler, M., Gräfe, S. (eds) Ultrafast Dynamics Driven by Intense Light Pulses. Springer Series on Atomic, Optical, and Plasma Physics, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-20173-3_4

Download citation

Publish with us

Policies and ethics