Advertisement

Control of Ultrafast Electron Dynamics with Shaped Femtosecond Laser Pulses: From Atoms to Solids

  • Matthias WollenhauptEmail author
  • Tim Bayer
  • Thomas Baumert
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 86)

Abstract

In this chapter, we present an introduction to the fundamentals of femtosecond pulse shaping and review recent demonstrations of coherent control by pulse tailoring. We portray control of three-dimensional free-electron wave packets, strong-field control by selective population of dressed states (SPODS) and control of ionization processes in dielectrics. Prototypical spectral phase masks such as polynomial- and sinusoidal functions are discussed and concepts of polarization shaping such as the instantaneous frequency and the instantaneous polarization state are introduced and illustrated on representative examples. In addition, experiments on coherent control are reviewed. Coherence transfer from light to matter is studied on the interference of free-electron wave packets. We analyze control and adaptive optimization of three-dimensional designer free-electron wave packets by polarization shaping. Strong-field control via SPODS is introduced and elucidated on specific realizations via rapid adiabatic passage and photon locking. This concept is extended to strong-field control of the concerted electron-nuclear dynamics in molecules. Finally, we present recent experiments on control of ionization processes in dielectrics.

Notes

Acknowledgments

We like to thank Dipl. Phys. Jens Köhler and M.Sc. Dominik Pengel for careful proofreading of the manuscript and Dr. Lars Englert for preparing the Figs. 4.24 and 4.25 for this review. Financial support by DFG via the project WO-848/3-1 and the priority program SPP 1327 is gratefully acknowledged.

References

  1. 1.
    S.A. Rice, M. Zhao, in Optical Control of Molecular Dynamics (Wiley, New York, 2000)Google Scholar
  2. 2.
    M. Shapiro, P. Brumer, in Principles of the Quantum Control of Molecular Processes, 1st edn. Wiley, Hoboken, 2003)Google Scholar
  3. 3.
    D. Tannor, in Introduction to Quantum Mechanics: A Time-Dependent Perspective (Palgrave Macmillan Publishers Limited, Houndmills, Basingstoke, Hampshire, RG21 6XS, England, 2007)Google Scholar
  4. 4.
    D.J. Tannor, S.A. Rice, Adv. Chem. Phys. 70, 441 (1988)Google Scholar
  5. 5.
    M. Shapiro, P. Brumer, Int. Rev. Phys. Chem. 13, 187 (1994)Google Scholar
  6. 6.
    T. Baumert, J. Helbing, G. Gerber, in Advances in Chemical Physics—Photochemistry: Chemical Reactions and Their Control on the Femtosecond Time Scale, ed. by I. Prigogine, S.A. Rice (Wiley, New York, 1997)Google Scholar
  7. 7.
    H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, Science 288, 824 (2000)ADSGoogle Scholar
  8. 8.
    M. Shapiro, P. Brumer, Rep. Prog. Phys. 66, 859 (2003)ADSGoogle Scholar
  9. 9.
    D. Goswami, Phys. Rep. 374, 385 (2003)ADSGoogle Scholar
  10. 10.
    M. Dantus, V.V. Lozovoy, Chem. Rev. 104, 1813 (2004)Google Scholar
  11. 11.
    V. Bonacic-Koutecky, R. Mitric, Chem. Rev. 105, 11 (2005)Google Scholar
  12. 12.
    T. Brixner et al., in Femtosecond Laser Spectroscopy, ed. by P. Hannaford (Springer, Berlin, 2005), Chap. 9Google Scholar
  13. 13.
    M. Wollenhaupt, V. Engel, T. Baumert, Ann. Rev. Phys. Chem. 56, 25 (2005)ADSGoogle Scholar
  14. 14.
    P. Nuernberger, G. Vogt, T. Brixner, G. Gerber, Phys. Chem. Chem. Phys. 9, 2470 (2007)Google Scholar
  15. 15.
    J. Werschnik, E.K.U. Gross, J. Phys. B 40, R175–R211 (2007)MathSciNetADSGoogle Scholar
  16. 16.
    W. Wohlleben, T. Buckup, J.L. Herek, M. Motzkus, Chem. Phys. Chem. 6, 850 (2005)Google Scholar
  17. 17.
    Y. Silberberg, Ann. Rev. Phys. Chem. 60, 277 (2009)ADSGoogle Scholar
  18. 18.
    K. Ohmori, Ann. Rev. Phys. Chem. 60, 487 (2009)ADSGoogle Scholar
  19. 19.
    C. Brif, R. Chakrabarti, H. Rabitz, New. J. Phys. 12, 075008 (2010)ADSGoogle Scholar
  20. 20.
    R. Stoian, M. Wollenhaupt, T. Baumert, I.V. Hertel, in Laser Precision Microfabrication, ed. by K. Sugioka, M. Meunier, A. Piqué (Springer, Berlin Heidelberg, 2010), Chap. 5Google Scholar
  21. 21.
    M. Wollenhaupt, T. Baumert, Faraday Discuss. 153, 9 (2011)ADSGoogle Scholar
  22. 22.
    M. Wollenhaupt, C. Lux, M. Krug, T. Baumert, Chem. Phys. Chem. 14, 1341 (2013)Google Scholar
  23. 23.
    S. Thallmair et al. in Molecular Quantum Dynamics: From Theory to Applications, ed. by F. Gatti (Springer, Heidelberg, 2014)Google Scholar
  24. 24.
    P. Gaspard, I. Burghardt (eds.), (Wiley, New York, 1997), Chap. 101Google Scholar
  25. 25.
    J.L. Herek, J. Photochem. Photobiol. A 180, 225 (2006)Google Scholar
  26. 26.
    H. Fielding, M. Shapiro, T. Baumert, J. Phys. B 41, 070201-1 (2008)Google Scholar
  27. 27.
    H. Rabitz, New J. Phys. 11, 105030 (2009)MathSciNetADSGoogle Scholar
  28. 28.
    H.H. Fielding, M.A. Robb, Phys. Chem. Chem. Phys. 12, 15569 (2010)Google Scholar
  29. 29.
    H. Braun et al., J. Phys. B 47, 124015 (2014)ADSGoogle Scholar
  30. 30.
    M. Wollenhaupt, A. Assion, T. Baumert, in Springer Handbook of Lasers and Optics, 2nd edn., ed. F. Träger (Springer, Dordrecht, Heidelberg, London, New York, 2012), Chap. 12Google Scholar
  31. 31.
    A. Monmayrant, S. Weber, B. Chatel, J. Phys. B : At. Mol. Opt. Phys. 43, 103001-34 (2010)ADSzbMATHGoogle Scholar
  32. 32.
    J. Schneider et al., Phys. Chem. Chem. Phys. 13, 8733 (2011)Google Scholar
  33. 33.
    A. Galler, T. Feurer, Appl. Phys. B. 90, 427 (2008)ADSGoogle Scholar
  34. 34.
    B. von Vacano, T. Buckup, M. Motzkus, J. Opt. Soc. Am. B 24, 1091 (2007)ADSGoogle Scholar
  35. 35.
    J. Köhler et al., Opt. Express 19, 11638 (2011)ADSGoogle Scholar
  36. 36.
    R. Bracewell, in The Fourier Transform and Its Applications , 3rd edn. (McGraw-Hill Higher Education, Singapore, 2000)Google Scholar
  37. 37.
    L. Allen, J.H. Eberly, in Optical Resonance and Two-Level Atoms , 2nd edn. (Dover Publications, New York, 1987)Google Scholar
  38. 38.
    N. Dudovich, T. Polack, A. Péer, Y. Silberberg, Phys. Rev. Lett. 94, 083002-4 (2005)ADSzbMATHGoogle Scholar
  39. 39.
    M. Wollenhaupt et al., Phys. Rev. A 73, 063409-15 (2006)ADSGoogle Scholar
  40. 40.
    T. Bayer, M. Wollenhaupt, T. Baumert, J. Phys. B. 41, 074007-13 (2008)ADSGoogle Scholar
  41. 41.
    L. Cohen, in Time-Frequency Analysis (Prentice Hall PTR, New Jersey, 1995)Google Scholar
  42. 42.
    E. Sorokin, G. Tempea, T. Brabec, JOSA B 17, 146 (2000)ADSGoogle Scholar
  43. 43.
    A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, T. Baumert, Phys. Rev. A 70, 063407-10 (2004)ADSzbMATHGoogle Scholar
  44. 44.
    H.R. Telle et al., Appl. Phys. B 69, 327 (1999)ADSGoogle Scholar
  45. 45.
    F.W. Helbing et al., Appl. Phys. B 74, 35 (2002)ADSGoogle Scholar
  46. 46.
    A. Apolonski et al., Phys. Rev. Lett. 92, 073902-4 (2004)ADSGoogle Scholar
  47. 47.
    G. Sansone et al., Phys. Rev. A 73, 053408 (2006)ADSGoogle Scholar
  48. 48.
    M.F. Kling et al., New J. Phys. 10, 025024-17 (2008)ADSGoogle Scholar
  49. 49.
    G. Cerullo, A. Baltuska, O.D. Mucke, C. Vozzi, Laser Photonics Rev. 5, 323 (2011)Google Scholar
  50. 50.
    B. Broers, L.D. Noordam, H.B. van Linden van den Heuvell, Phys. Rev. A 46, 2749 (1992)Google Scholar
  51. 51.
    C.J. Bardeen, Q. Wang, C.V. Shank, Phys. Rev. Lett. 75, 3410 (1995)ADSGoogle Scholar
  52. 52.
    A. Assion et al., Chem. Phys. Lett. 259, 488 (1996)ADSGoogle Scholar
  53. 53.
    J. Degert et al., Phys. Rev. Lett. 89, 203003–203003-4 (2002)Google Scholar
  54. 54.
    M. Wollenhaupt et al., Appl. Phys. B 82, 183 (2006)ADSGoogle Scholar
  55. 55.
    P. Nuernberger, Opt. Commun. 282, 227 (2009)ADSGoogle Scholar
  56. 56.
    M. Krug et al., New J. Phys. 11, 105051 (2009)ADSzbMATHGoogle Scholar
  57. 57.
    J.D. McMullen, JOSA 67, 1575 (1977)ADSGoogle Scholar
  58. 58.
    L. Englert et al., Opt. Express 15, 17855 (2007)ADSGoogle Scholar
  59. 59.
    L. Englert et al., Appl. Phys. A 92, 749 (2008)ADSGoogle Scholar
  60. 60.
    N.T. Form, B.J. Whitaker, C. Meier, J. Phys. B : At. Mol. Opt. Phys. 41, 074011 (2008)ADSGoogle Scholar
  61. 61.
    M. Ruge et al., J. Phys. Chem. C 117, 11780 (2013)Google Scholar
  62. 62.
    D. Meshulach, Y. Silberberg, Nature 396, 239 (1998)ADSGoogle Scholar
  63. 63.
    M. Wollenhaupt et al., J. Mod. Opt. 52, 2187 (2005)ADSGoogle Scholar
  64. 64.
    A. Bartelt et al., Phys. Chem. Chem. Phys. 5, 3610 (2003)zbMATHGoogle Scholar
  65. 65.
    V.V. Lozovoy, I. Pastirk, A. Walowicz, M. Dantus, J. Chem. Phys. 118, 3187 (2003)ADSGoogle Scholar
  66. 66.
    M. Wollenhaupt, T. Baumert, J. Photochem. Photobiol. A 180, 248 (2006)Google Scholar
  67. 67.
    M. Wollenhaupt et al., Chem. Phys. Lett. 419, 184 (2006)ADSGoogle Scholar
  68. 68.
    J.L. Herek et al., Nature 417, 533 (2002)ADSGoogle Scholar
  69. 69.
    T. Bayer et al., Phys. Rev. Lett. 110, 123003 (2013)ADSGoogle Scholar
  70. 70.
    N. Dudovich, D. Oron, Y. Silberberg, J. Chem. Phys. 118, 9208 (2003)ADSGoogle Scholar
  71. 71.
    J. Voll, R. Vivie-Riedle, New J. Phys. 11, 105036 (2009)ADSGoogle Scholar
  72. 72.
    J. Hauer, T. Buckup, M. Motzkus, J. Chem. Phys. 125, 061101-3 (2006)ADSGoogle Scholar
  73. 73.
    T. Brixner, G. Gerber, Opt. Lett. 26, 557 (2001)ADSGoogle Scholar
  74. 74.
    N. Dudovich, D. Oron, Y. Silberberg, Phys. Rev. Lett. 92, 103003-4 (2004)ADSGoogle Scholar
  75. 75.
    T. Brixner et al., Phys. Rev. Lett. 92, 208301-4 (2004)ADSGoogle Scholar
  76. 76.
    M. Wollenhaupt et al., Appl. Phys. B 95, 245 (2009)ADSGoogle Scholar
  77. 77.
    F. Weise, G. Achazi, A. Lindinger, Phys. Chem.Chem. Phys. 13, 8621 (2011)Google Scholar
  78. 78.
    M. Aeschlimann et al., Nature 446, 301 (2007)ADSzbMATHGoogle Scholar
  79. 79.
    P. Schön et al., Phys. Rev. A 81, 013809 (2010)ADSGoogle Scholar
  80. 80.
    R. Selle et al., Opt. Lett. 33, 803 (2008)ADSzbMATHGoogle Scholar
  81. 81.
    A.M. Weiner, Rev. Sci. Instr. 71, 1929 (2000)ADSGoogle Scholar
  82. 82.
    A. Präkelt et al., Rev. Sci. Instr. 74, 4950 (2003)ADSGoogle Scholar
  83. 83.
    D.B. Strasfeld, S.-H. Shim, M.T. Zanni, Adv. Chem. Phys. 141, 1 (2009)Google Scholar
  84. 84.
    T. Hornung, R. Meier, M. Motzkus, Chem. Phys. Lett. 326, 445 (2000)ADSGoogle Scholar
  85. 85.
    S. Fechner et al., Opt. Express 15, 15387 (2007)ADSGoogle Scholar
  86. 86.
    S. Ruetzel et al., Phys. Chem. Chem. Phys. 13, 8627 (2011)Google Scholar
  87. 87.
    R.S. Judson, H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992)ADSzbMATHGoogle Scholar
  88. 88.
    T. Baumert et al., Appl. Phys. B 65, 779 (1997)ADSGoogle Scholar
  89. 89.
    D. Meshulach, D. Yelin, Y. Silberberg, Opt. Commun. 138, 345 (1997)ADSGoogle Scholar
  90. 90.
    C.J. Bardeen et al., Chem. Phys. Lett. 280, 151 (1997)ADSGoogle Scholar
  91. 91.
    A. Assion et al., Science 282, 919 (1998)ADSGoogle Scholar
  92. 92.
    R.J. Levis, H.A. Rabitz, J. Phys. Chem. A 106, 6427 (2002)Google Scholar
  93. 93.
    C. Daniel et al., Science 299, 536 (2003)ADSGoogle Scholar
  94. 94.
    D. Yelin, D. Meshulach, Y. Silberberg, Opt. Lett. 22, 1793 (1997)ADSGoogle Scholar
  95. 95.
    N. Hansen, in The CMA Evolution Strategy: A Tutorial (2009)Google Scholar
  96. 96.
    J.W. Wilson et al., Rev. Sci. Instrum. 79, 033103-5 (2008)ADSGoogle Scholar
  97. 97.
    M. Wollenhaupt et al., Phys. Rev. Lett. 89, 173001-4 (2002)ADSGoogle Scholar
  98. 98.
    F. Lindner et al., Phys. Rev. Lett. 95, 040401-4 (2005)ADSGoogle Scholar
  99. 99.
    M. Winter, M. Wollenhaupt, T. Baumert, Opt. Commun. 264, 285 (2006)ADSzbMATHGoogle Scholar
  100. 100.
    P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)zbMATHGoogle Scholar
  101. 101.
    J. Mauritsson et al., Phys. Rev. Lett. 105, 053001 (2010)ADSGoogle Scholar
  102. 102.
    M. Born, Phys. Bl 2, 49 (1955)ADSGoogle Scholar
  103. 103.
    C. Cohen-Tannoudji, B. Diu, F. Laloe, in Quantum Mechanics, vol. 1. (Wiley, New York, 1977)Google Scholar
  104. 104.
    P. Brumer, M. Shapiro, Ann. Rev. Phys. Chem. 43, 257 (1992)ADSGoogle Scholar
  105. 105.
    M. Wollenhaupt et al., J. Opt. B 7, S270–S276 (2005)ADSGoogle Scholar
  106. 106.
    M. Wollenhaupt, M. Krug, T. Baumert, Phys. J. 11, 37 (2012)Google Scholar
  107. 107.
    P. Hockett, M. Wollenhaupt, C. Lux, T. Baumert, Phys. Rev. Lett. 112, 223001 (2014)ADSGoogle Scholar
  108. 108.
    K.L. Reid, Mol. Phys. 110, 131 (2012)ADSGoogle Scholar
  109. 109.
    M. Wollenhaupt et al., Appl. Phys. B 95, 647 (2009)ADSGoogle Scholar
  110. 110.
    D.A. Malik et al., Phys. Rev. A 84, 043404–043404-5 (2011)Google Scholar
  111. 111.
    A. Vredenborg et al., Chem. Phys. Chem. 12, 1459 (2011)Google Scholar
  112. 112.
    J. Maurer et al., Phys. Rev. Lett. 109, 123001 (2012)ADSGoogle Scholar
  113. 113.
    A.T.J.B. Eppink, D.H. Parker, Rev. Sci. Instr. 68, 3477 (1997)ADSGoogle Scholar
  114. 114.
    B.J. Whitaker, in Imaging in Molecular Dyanmics—Technology and Applications, (Cambridge University Press, Cambridge, 2003)Google Scholar
  115. 115.
    G.A. Garcia, L. Nahon, I. Powis, Rev. Sci. Instr. 75, 4989 (2004)ADSGoogle Scholar
  116. 116.
    A.C. Kak, M. Slaney, in Principles of Computerized Tomographic Imaging, (IEEE Press, New York, 1999)Google Scholar
  117. 117.
    C. Smeenk et al., J. Phys. B 42, 165402 (2009)ADSGoogle Scholar
  118. 118.
    P. Hockett, M. Staniforth, K.L. Reid, Mol. Phys. 108, 1045 (2010)ADSGoogle Scholar
  119. 119.
    T. Frohnmeyer, M. Hofmann, M. Strehle, T. Baumert, Chem. Phys. Lett. 312, 447 (1999)ADSGoogle Scholar
  120. 120.
    C. Trallero-Herrero, J.L. Cohen, T. Weinacht, Phys. Rev. Lett. 96, 063603-4 (2006)ADSGoogle Scholar
  121. 121.
    B.J. Sussman, D. Townsend, M.Y. Ivanov, A. Stolow, Science 314, 278 (2006)ADSGoogle Scholar
  122. 122.
    U. Gaubatz et al., Chem. Phys. Lett. 149, 463 (1988)ADSGoogle Scholar
  123. 123.
    N.V. Vitanov, T. Halfmann, B.W. Shore, K. Bergmann, Ann. Rev. Phys. Chem. 52, 763 (2001)ADSGoogle Scholar
  124. 124.
    B. W. Shore, Acta Phys. Slovaca 58, 243 (2008)Google Scholar
  125. 125.
    E.T. Sleva, I.M. Xavier Jr, A.H. Zewail, JOSA B 3, 483 (1985)ADSGoogle Scholar
  126. 126.
    Y.S. Bai, A.G. Yodh, T.W. Mossberg, Phys. Rev. Lett. 55, 1277 (1985)ADSGoogle Scholar
  127. 127.
    R. Kosloff, A.D. Hammerich, D. Tannor, Phys. Rev. Lett. 69, 2172 (1992)ADSzbMATHGoogle Scholar
  128. 128.
    V.S. Malinovsky, C. Meier, D.J. Tannor, Chem. Phys. 221, 67 (1997)ADSGoogle Scholar
  129. 129.
    S.R. Hartmann, E.L. Hahn, Phys. Rev. 128, 2053 (1962)ADSGoogle Scholar
  130. 130.
    A. Abragam, in The Principles of Nuclear Magnetism, 13th edn. (Clarendon Press, Oxford, 1994) (Reprint)Google Scholar
  131. 131.
    S.H. Autler, C.H. Townes, Phys. Rev. 100, 703 (1955)ADSGoogle Scholar
  132. 132.
    P. Balling, D.J. Maas, L.D. Noordam, Phys. Rev. A 50, 4276 (1994)ADSGoogle Scholar
  133. 133.
    A.A. Rangelov et al., Phys. Rev. A 72, 053403-12 (2005)ADSzbMATHGoogle Scholar
  134. 134.
    J. Cao, C.J. Bardeen, K.R. Wilson, Phys. Rev. Lett. 80, 1406 (1998)ADSGoogle Scholar
  135. 135.
    V.S. Malinovsky, J.L. Krause, Eur. Phys. J. D 14, 147 (2001)ADSGoogle Scholar
  136. 136.
    M. Wollenhaupt et al., Phys. Rev. A 68, 015401-4 (2003)ADSGoogle Scholar
  137. 137.
    B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Appl. Phys. A 79, 767 (2004)ADSGoogle Scholar
  138. 138.
    P. Balling, J. Schou, Rep. Prog. Phys. 76, 036502 (2013)ADSGoogle Scholar
  139. 139.
    M. Wollenhaupt, L. Englert, A. Horn, T. Baumert, J. Laser Micro Nanoeng. 4, 144 (2009)Google Scholar
  140. 140.
    L. Englert et al., J. Laser Appl. 24, 042002–042002-5 (2012)Google Scholar
  141. 141.
    C. Sarpe-Tudoran et al., Appl Phys Lett 88, 261109–3 (2006)ADSGoogle Scholar
  142. 142.
    C. Sarpe et al., New J. Phys. 14, 075021 (2012)ADSGoogle Scholar
  143. 143.
    E. Tokunaga, A. Terasaki, T. Kobayashi, Opt. Lett. 17, 1131 (1992)ADSGoogle Scholar
  144. 144.
    V.V. Temnov et al., Phys. Rev. Lett. 97, 237403 (2006)ADSGoogle Scholar
  145. 145.
    A. Couairon et al., Phys. Rev. B 71, 125435-11 (2005)ADSGoogle Scholar
  146. 146.
    Y.V. White et al., Opt. Express 16, 14411 (2008)ADSGoogle Scholar
  147. 147.
    B. Delobelle, F. Courvoisier, P. Delobelle, Opt. Lasers Eng. 48, 616 (2009)Google Scholar
  148. 148.
    A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)ADSGoogle Scholar
  149. 149.
    T. Fennel et al., Rev. Mod. Phys. 82, 1793 (2010)ADSGoogle Scholar
  150. 150.
    F. Hubenthal et al., Appl. Phys. Lett. 95, 063101-3 (2009)ADSGoogle Scholar
  151. 151.
    R. Morarescu et al., J. Mater. Chem. 21, 4076 (2011)Google Scholar
  152. 152.
    A.A. Jamali et al., Appl. Phys. A 110, 743 (2013)ADSzbMATHGoogle Scholar
  153. 153.
    J.D. Winefordner et al., J. Anal. At. Spectrom. 19, 1061 (2004)Google Scholar
  154. 154.
    E.L. Gurevich, R. Hergendorfer, Appl. Spectr. 61, 233A (2007)ADSGoogle Scholar
  155. 155.
    J. Cheng et al., Opt. Laser Technol. 46, 88 (2013)ADSGoogle Scholar
  156. 156.
    A. Assion et al., Appl. Phys. B 77, 391 (2003)ADSGoogle Scholar
  157. 157.
    F. Dausinger, F. Lichtner, H. Lubatschowski (eds.), in Femtosecond Technology for Technical and Medical Applications, Topics in Applied Physics (Springer, Berlin Heidelberg, 2004)Google Scholar
  158. 158.
    W. Wessel et al., Eng. Fract. Mech. 77, 1874 (2010)Google Scholar
  159. 159.
    J. Mildner et al., Appl. Surf. Sci. 302, 291 (2014)ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Matthias Wollenhaupt
    • 1
    Email author
  • Tim Bayer
    • 1
  • Thomas Baumert
    • 2
  1. 1.Carl von Ossietzky Universität Oldenburg, Institut für PhysikOldenburgGermany
  2. 2.Universität Kassel, Institut für Physik und CINSaTKasselGermany

Personalised recommendations