Skip to main content

Abstract

No general solution for the three-dimensional flow field is known for an inclined disk with finite radius R subjected to streams of air. In their pioneering papers on parallel rotating disks subjected to air streams, Dennis et al. [1] and Booth and de Vere [2] recognized how important the effect of flow separation at the rim of the blunt disk is for flow and heat transfer behavior. In general, the angle of attack (i.e., the inclination) of the disk β represents a third major parameter in addition to rotational and translational Reynolds numbers Re ω and Re u . Furthermore, the disk thickness ratio d/R is also relevant for the occurrence of flow separation and reattachment of a turbulent boundary. It is therefore useful to organize the following discussion into two separate chapters: a discussion of the phenomena involved in a stationary disk (Chap. 5) followed by an extension to rotating disks (Chap. 6) based on the results for stationary disks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dennis RW, Newstead C, Ede AJ (1970) The heat transfer from a rotating disc in an air crossflow. In: Proceedings of 4th International Heat Transfer Conference, Versailles, 1970 (paper FC 7.1)

    Google Scholar 

  2. Booth GL, de Vere APC (1974) Convective heat transfer from a rotating disc in a transverse air stream. In: Proceedings of 5th International Heat Transfer Conference, Tokyo, 1974 (paper FC1.7)

    Google Scholar 

  3. Helcig C, aus der Wiesche S (2013) The effect of the incidence angle on the flow over a rotating disk subjected to forced air streams. In: Proceedings ASME Fluids Engineering Summer Meeting, Incline Village, NV (paper FEDSM2013-16360)

    Google Scholar 

  4. Ota T, Kon N (1974) Heat transfer in the separated and reattached flow on a blunt flat plate. ASME J Heat Transf 96:459–462

    Article  Google Scholar 

  5. Ota T, Itasaka M (1976) A separated and reattached flow on a blunt flat pate. ASME J Fluids Eng 98:79–86

    Article  Google Scholar 

  6. Yanaoka H, Yoshikawa H, Ota T (2003) Direct numerical simulation of turbulent separated flow and heat transfer over a blunt flat plate. ASME J Heat Transf 125:779–787

    Article  Google Scholar 

  7. Kottke V, Blenke H, Schmidt KG (1977) Einfluß von Anströmprofil und Turbulenzintensität auf die Umströmung längsangeströmter Platten endlicher Dicke. Wärme- Stoffübertragung (Heat Mass Transfer) 10:159–174 (in German)

    Article  Google Scholar 

  8. Kottke V, Blenke H, Schmidt KG (1977) Bestimmung des örtlichen und mittleren Stoffübergangs an längsangeströmter Platten endlicher Dicke mit Ablösen und Wiederanlegen der Strömung. Wärme- Stoffübertragung (Heat Mass Transfer) 10:159–174 (in German)

    Article  Google Scholar 

  9. Schlichting H, Gersten K (1997) Grenzschicht-Theorie, 9th edn. Springer, Berlin

    Book  Google Scholar 

  10. Trinkl CM, Bardas U, Weyck A, aus der Wiesche S (2011) Experimental study of the convective heat transfer from a rotating disc subjected to forced air streams. Int J Therm Sci 50:73–80

    Article  Google Scholar 

  11. Nishiyama H, Ota T, Sato K (1988) Temperature fluctuations in a separated and reattached turbulent flow over a blunt flat plate. Heat Mass Transf 23:275–281

    Google Scholar 

  12. Helcig C, Uhkötter S, aus der Wiesche S (2014) Flow over a blunt disk with incidence: location of stagnation point and flow separation. In: Proceedings ASME Fluids Engineering Summer Meeting, Chicago, IL (paper FEDSM2014-21181)

    Google Scholar 

  13. Milne-Thomson LM (1996) Theoretical hydrodynamics. Dover Publications, New York

    Google Scholar 

  14. Helcig C, aus der Wiesche S (2014) Convective heat transfer from a free rotating disk subjected to a forced crossflow. In: Proceedings ASME Turbo Expo, Düsseldorf, Germany (paper GT2014-26223)

    Google Scholar 

  15. Haken H (1978) Synergetics, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  16. Falk G (1968) Thermodynamik. Heidelberger Taschenbücher, Springer, Heidelberg

    Google Scholar 

  17. Haug H (1997) Statistische Physik. Vieweg, Wiesbaden

    Google Scholar 

  18. Papon P, Leblond J, Meijer PHE (2006) The physics of phase transitions. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

aus der Wiesche, S., Helcig, C. (2016). Stationary Disk in Air Stream. In: Convective Heat Transfer From Rotating Disks Subjected To Streams Of Air. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-20167-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20167-2_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20166-5

  • Online ISBN: 978-3-319-20167-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics