Skip to main content

NMR Methods for the Study of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions: General Overview and Practical Guidelines

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 870))

Abstract

Thanks to recent improvements in NMR instrumentation, pulse sequence design, and sample preparation, a panoply of new NMR tools has become available for atomic resolution characterization of intrinsically disordered proteins (IDPs) that are optimized for the particular chemical and spectroscopic properties of these molecules. A wide range of NMR observables can now be measured on increasingly complex IDPs that report on their structural and dynamic properties in isolation, as part of a larger complex, or even inside an entire living cell. Herein we present basic NMR concepts, as well as optimised tools available for the study of IDPs in solution. In particular, the following sections are discussed hereafter: a short introduction to NMR spectroscopy and instrumentation (Sect. 3.1), the effect of order and disorder on NMR observables (Sect. 3.2), particular challenges and bottlenecks for NMR studies of IDPs (Sect. 3.3), 2D HN and CON NMR experiments: the fingerprint of an IDP (Sect. 3.4), tools for overcoming major bottlenecks of IDP NMR studies (Sect. 3.5), 13C detected experiments (Sect. 3.6), from 2D to 3D: from simple snapshots to site-resolved characterization of IDPs (Sect. 3.7), sequential NMR assignment: 3D experiments (Sect. 3.8), high-dimensional NMR experiments (nD, with n > 3) (Sect. 3.9) and conclusions and perspectives (Sect. 3.10).

This is a preview of subscription content, log in via an institution.

References

  • Arnesano F, Banci L, Bertini I et al (2001) Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J Biol Chem 276:41365–41376

    Article  CAS  PubMed  Google Scholar 

  • Arnesano F, Balatri E, Banci L et al (2005) Folding studies of Cox17 reveal an important interplay of cysteine oxidation and copper binding. Structure 13:713–722

    Article  CAS  PubMed  Google Scholar 

  • Bagai I, Raqsdale SW, Zuiderweg ER (2011) Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins. J Biomol NMR 49:69–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai Y, Milne JS, Mayne L et al (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17:75–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Huber JG et al (1998) Partial orientation of oxidized and reduced cytochrome b 5 at high magnetic fields: magnetic susceptibility anisotropy contributions and consequences for protein solution structure determination. J Am Chem Soc 120:12903–12909

    Article  CAS  Google Scholar 

  • Barbato G, Ikura M, Kay LE et al (1992) Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy; the central helix is flexible. Biochemistry 31:5269–5278

    Article  CAS  PubMed  Google Scholar 

  • Bax A, Grishaev A (2005) Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr Opin Struct Biol 15:563–570

    Article  CAS  PubMed  Google Scholar 

  • Bax A, Ikura M (1991) An efficient 3D NMR technique for correlating the proton and 15Nbackbone amide resonances with the α-carbon of the preceding residue. J Biomol NMR 1:99–104

    Article  CAS  PubMed  Google Scholar 

  • Bermel W, Bertini I, Duma L et al (2005) Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angew Chem Int Ed 44:3089–3092

    Article  CAS  Google Scholar 

  • Bermel W, Bertini I, Felli IC et al (2006a) Novel 13C direct detection experiments, including extension to the third dimension, to perform the complete assignment of proteins. J Magn Reson 178:56–64

    Article  CAS  PubMed  Google Scholar 

  • Bermel W, Bertini I, Felli IC et al (2006b) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128:3918–3919

    Article  CAS  PubMed  Google Scholar 

  • Bermel W, Bertini I, Felli IC et al (2006c) 13C-detected protonless NMR spectroscopy of proteins in solution. Progr NMR Spectrosc 48:25–45

    Article  CAS  Google Scholar 

  • Bermel W, Felli IC, Kümmerle R et al (2008) 13C direct-detection biomolecular NMR. Concepts Magn Reson 32A:183–200

    Article  CAS  Google Scholar 

  • Bermel W, Bertini I, Csizmok V et al (2009a) H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. J Magn Reson 198:275–281

    Article  CAS  PubMed  Google Scholar 

  • Bermel W, Bertini I, Felli IC et al (2009b) Speeding up 13C direct detection biomolecular NMR experiments. J Am Chem Soc 131:15339–15345

    Article  CAS  PubMed  Google Scholar 

  • Bermel W, Bertini I, Chill JH et al (2012a) Exclusively heteronuclear 13C-detected amino-acid-selective NMR experiments for the study of instrinsically disordered proteins (IDPs). Chem Bio Chem 13:2425–2432

    Article  CAS  PubMed  Google Scholar 

  • Bermel W, Bertini I, Gonnelli L et al (2012b) Speeding up sequence specific assignment of IDPs. J Biomol NMR 53:293–301

    Article  CAS  PubMed  Google Scholar 

  • Bermel W, Felli IC, Gonnelli L et al (2013) High-dimensionality 13C direct-detected NMR experiments for the automatic assignment of intrinsically disordered proteins. J Biomol NMR 57:353–361

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Felli IC, Kümmerle R et al (2004) 13C-13C NOESY: a constructive use of 13C-13C spin-diffusion. J Biomol NMR 30:245–251

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Felli IC, Gonnelli L et al (2011a) 13C direct-detection biomolecular NMR spectroscopy in living cells. Angew Chem Int Ed 50:2339–2341

    Article  CAS  Google Scholar 

  • Bertini I, Felli IC, Gonnelli L et al (2011b) High-resolution characterization of intrinsic disorder in proteins: expanding the suite of 13C detected NMR experiments to determine key observables. ChemBioChem 12:2347–2352

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Luchinat C, Parigi G et al (2011c) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci U S A 108:10396–10399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Billeter M, Neri D, Otting G et al (1992) Precise vicinal coupling constants 3JHαN in proteins from nonlinear fits of J-modulated [15N,1H]-COSY experiments. J Biomol NMR 2:257–74

    Article  CAS  PubMed  Google Scholar 

  • Bloch F (1946) Nuclear induction. Phys Rev 70:460–474

    Article  CAS  Google Scholar 

  • Bloch F (1956) Dynamical theory of nuclear induction. II. Phys Rev 102:104–135

    Article  CAS  Google Scholar 

  • Boucher W, Laue ED, Campbell-Burk SL et al (1992) Improved 4D NMR experiments for the assignment of backbone nuclei in 13C/15Nlabelled proteins. J Biomol NMR 2:631–637

    Article  CAS  Google Scholar 

  • Bracken C, Palmer AG III, Cavanagh J (1997) (H)N(COCA)NH and HN(COCA)NH experiments for 1H-15Nbackbone assignments in 13C/15N-labeled proteins. J Biomol NMR 9:94–100

    Article  CAS  PubMed  Google Scholar 

  • Briand L, Lescop E, Bézirard V et al (2001) Isotopic double-labeling of two honeybee odorant-binding proteins secreted by the methylotrophic yeast Pichia pastoris. Protein Expr Purif 23:167–174

    Article  CAS  PubMed  Google Scholar 

  • Brutscher B (2002) Intraresidue HNCA and COHNCA experiments for protein backbone resonance assignment. J Magn Reson 156:155–159

    Article  CAS  PubMed  Google Scholar 

  • Brutscher B (2004a) Combined frequency- and time-domain NMR spectroscopy. Application to fast protein resonance assignment. J Biomol NMR 29:57–64

    Article  CAS  PubMed  Google Scholar 

  • Brutscher B (2004b) DEPT spectral editing in HCCONH-type experiments. Application to fast protein backbone and side chain assignment. J Magn Reson 167:178–184

    Article  CAS  PubMed  Google Scholar 

  • Brutscher B, Cordier F, Simorre JP et al (1995a) High-resolution 3D HNCOCA experiment applied to a 28 kDa paramagnetic protein. J Biomol NMR 5:202–206

    Article  CAS  PubMed  Google Scholar 

  • Brutscher B, Morelle N, Cordier F et al (1995b) Determination of an initial set of NOE-derived distance constraints for the structure determination of 15N/ 13C labeled proteins. J Magn Reson B 109:238–242

    Article  CAS  Google Scholar 

  • Case DA (2000) Interpretation of chemical shifts and coupling constants in macromolecules. Curr Opin Struct Biol 10:197–203

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG III et al (2007) Protein NMR Spectroscopy. Principles and practice. Academic, San Diego

    Google Scholar 

  • Chimon S, Shaibat MA, Jones CR et al (2007) Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid. Nat Struct Mol Biol 14:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Clowes RT, Boucher W, Hardman CH et al (1993) A 4D HCC(CO)NNH experiment for the correlation of aliphatic side-chain and backbone resonances in 13C/15N-labelled proteins. J Biomol NMR 3:349–354

    Article  CAS  Google Scholar 

  • Clubb RT, Thanabal V, Wagner G (1992) A constant-time three dimensional triple-resonance pulse scheme to correlate intraresidue 1HN, 15N, and 13C' chemical shifts in 15N-13C- labeled proteins. J Magn Reson 97:213–217

    CAS  Google Scholar 

  • Coggins BE, Zhou P (2007) Sampling of the NMR time domain along concentric rings. J Magn Reson 184:207–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cowburn D, Shekhtman A, Xu R et al (2004) Segmental isotopic labeling for structural biological applications of NMR. Methods Mol Biol 278:47–56

    CAS  PubMed  Google Scholar 

  • Csizmok V, Felli IC, Tompa P et al (2008) Structural and dynamic characterization of intrinsically disordered human securin by NMR. J Am Chem Soc 130:16873–16879

    Article  CAS  PubMed  Google Scholar 

  • Dötsch V, Oswald RE, Wagner G (1996a) Amino-acid type-selective triple-resonance experiments. J Magn Reson B 110:107–111

    Article  PubMed  Google Scholar 

  • Dötsch V, Oswald RE, Wagner G (1996b) Selective identification of threonine, valine and isoleucine sequential connectivities with a TVI-CBCACONH experiment. J Magn Reson B 110:304–308

    Article  PubMed  Google Scholar 

  • Duma L, Hediger S, Brutscher B et al (2003a) Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection. J Am Chem Soc 125:
11816–11817

    Article  CAS  PubMed  Google Scholar 

  • Duma L, Hediger S, Lesage A et al (2003b) Spin-state selection in solid-state NMR. J Magn Reson 164:187–195

    Article  CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE (2001) Nuclear magnetic resonance methods for the elucidation of structure and dynamics in disordered states. Methods Enzymol 339:258–271

    Article  CAS  PubMed  Google Scholar 

  • Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emsley L, Bodenhausen G (1990) Phase-shifts induced by transient Bloch-Siegert effect in NMR. Chem Phys Lett 168:297–303

    Article  CAS  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon, Oxford

    Google Scholar 

  • Farrow NA, Zhang O, Szabo A et al (1995) Spectral density function mapping using 15N relaxation data exclusively. J Biomol NMR 6:153–162

    Article  CAS  PubMed  Google Scholar 

  • Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49:9–15

    Article  CAS  PubMed  Google Scholar 

  • Felli IC, Pierattelli R (2014a) Novel methods based on 13C detection to study intrinsically disordered proteins. J Magn Reson 241:115–125

    Article  CAS  PubMed  Google Scholar 

  • Felli IC, Pierattelli R (2014b) Spin-state-selctive methods in solution- and solid-state biomolecular 13C NMR. Prog NMR Spectrosc 84–85:1–13

    Google Scholar 

  • Felli IC, Pierattelli R, Glaser SJ et al (2009) Relaxation-optimised Hartmann-Hahn transfer for carbonyl-carbonyl correlation spectroscopy using a specifically tailored MOCCA-XY16 mixing sequence for protonless 13C direct detection experiments. J Biomol NMR 43:187–196

    Article  CAS  PubMed  Google Scholar 

  • Felli IC, Pierattelli R, Tompa P (2012) Intrinsically disordered proteins. In: Bertini I, McGreevy K, Parigi G (eds) NMR of biomolecules: towards mechanistic systems biology. Wiley

    Google Scholar 

  • Felli IC, Piai A, Pierattelli R (2013) Recent advances in solution NMR studies: 13C direct detection for biomolecular NMR applications. Ann Rep NMR Spectroscop 80:359–418

    Google Scholar 

  • Felli IC, Gonnelli L, Pierattelli R (2014) In-cell 13C NMR spectroscopy for the study of intrinsically disordered proteins. Nat Protoc 9:2005–2016

    Article  CAS  PubMed  Google Scholar 

  • Feuerstein S, Plevin MJ, Willbold D et al (2012) iHADAMAC: a complementary tool for sequential resonance assignment of globular and highly disordered proteins. J Magn Reson 214:329–334

    Article  CAS  PubMed  Google Scholar 

  • Gal M, Edmonds KA, Milbradt AG et al (2011) Speeding up direct 15N detection: hCaN 2D NMR experiment. J Biomol NMR 51:497–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gardner KH, Konrat R, Rosen MK et al (1996) An (H)C(CO)NH-TOCSY pulse scheme for sequential assignment of protonated methyl groups in otherwise deuterated 15N, 13C-labeled proteins. J Biomol NMR 8:351–356

    Article  CAS  PubMed  Google Scholar 

  • Gil S, Hošek T, Solyom Z et al (2013) NMR studies of intrinsically disordered proteins near physiological conditions. Angew Chem Int Ed 52:11808–11812

    Article  CAS  Google Scholar 

  • Gil S, Favier A, Brutscher B (2014) HNCA+, HNCO+, and HNCACB+ experiments: improved performance by simultaneous detection of orthogonal coherence transfer pathways. J Biomol NMR 60:1–9

    Article  CAS  Google Scholar 

  • Gossert AD, Hiller S, Fernández C (2011) Automated NMR resonance assignment of large proteins for protein-ligand interaction studies. J Am Chem Soc 133:210–213

    Article  CAS  PubMed  Google Scholar 

  • Grzesiek S, Bax A (1992a) Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114:6291–6293

    Article  CAS  Google Scholar 

  • Grzesiek S, Bax A (1992b) Improved 3D triple-resonance NMR techniques applied to a 31 KDa protein. J Magn Reson 96:432–440

    CAS  Google Scholar 

  • Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204

    CAS  PubMed  Google Scholar 

  • Grzesiek S, Anglister J, Bax A (1993a) Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of 13C magnetization. J Magn Reson Ser B 101:114–119

    Article  CAS  Google Scholar 

  • Grzesiek S, Anglister J, Ren H et al (1993b) 13C line narrowing by 2H decoupling in 2H/13C/15N-enriched proteins. Application to triple resonance 4D J connectivity of sequential amides. J Am Chem Soc 115:4369–4370

    Article  CAS  Google Scholar 

  • Hiller S, Fiorito F, Wüthrich K et al (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci U S A 102:10876–10881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hiller S, Wasmer C, Wider G et al (2007) Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy. J Am Chem Soc 129:10823–10828

    Article  CAS  PubMed  Google Scholar 

  • Hiller S, Joss R, Wider G (2008) Automated NMR assignment of protein side chain resonances using automated projection spectroscopy (APSY). J Am Chem Soc 130:12073–12079

    Article  CAS  PubMed  Google Scholar 

  • Hoch JC, Stern AS (1996) NMR data processing. Wiley-Liss, New York

    Google Scholar 

  • Holland DJ, Bostock MJ, Gladden LF et al (2011) Fast multidimensional NMR spectroscopy using compressed sensing. Angew Chem Int Ed Engl 50:6548–6551

    Article  CAS  PubMed  Google Scholar 

  • Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85

    Google Scholar 

  • Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of 1H, 13C and 15N spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29:4659–4667

    Article  CAS  PubMed  Google Scholar 

  • Jung YS, Zweckstetter M (2004) MARS: robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23

    Article  CAS  PubMed  Google Scholar 

  • Kadeřávek P, Zapletal V, Rabatinová A et al (2014) Spectral density mapping protocols for analysis of molecular motions in disordered proteins. J Biomol NMR 58:193–207

    Article  PubMed  CAS  Google Scholar 

  • Kanelis V, Donaldson L, Muhandiram DR et al (2000) Sequential assignment of proline-rich regions in proteins: application to modular binding domain complexes. J Biomol NMR 16:253–259

    Article  CAS  PubMed  Google Scholar 

  • Karplus M (1959) Contact electron-spin coupling of nuclear magnetic moments. J Chem Phys 30:11–15

    Article  CAS  Google Scholar 

  • Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28:8972–8979

    Article  CAS  PubMed  Google Scholar 

  • Kay LE, Ikura M, Tschudin R et al (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    CAS  Google Scholar 

  • Kay LE, Ikura M, Zhu G et al (1991) Four-dimensional heteronuclear triple resonance NMR of isotopically enriched proteins for sequential assignment of backbone atoms. J Magn Reson 91:422–428

    CAS  Google Scholar 

  • Kay LE, Xu GY, Yamazaki T (1994) Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O saturation. J Magn Reson Ser A 109:129–133

    Article  CAS  Google Scholar 

  • Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed Engl 50:5556–5559

    Article  CAS  PubMed  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W et al (2006) Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 36:157–168

    Article  CAS  PubMed  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Koźmiński W et al (2007) Lineshapes and artifacts in Multidimensional Fourier Transform of arbitrary sampled NMR data sets. J Magn Reson 188:344–356

    Article  CAS  PubMed  Google Scholar 

  • Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A et al (2010a) Random sampling in multidimensional NMR spectroscopy. Prog NMR Spectrosc 57:420–434

    Article  CAS  Google Scholar 

  • Kazimierczuk K, Zawadzka-Kazimierczuk A, Koźmiński W (2010b) Non-uniform frequency domain for optimal exploitation of non-uniform sampling. J Magn Reson 205:286–292

    Article  CAS  PubMed  Google Scholar 

  • Kazimierczuk K, Misiak M, Stanek J et al (2012) Generalized Fourier transform for non-uniform sampled data. Top Curr Chem 316:79–124

    Article  CAS  PubMed  Google Scholar 

  • Kazimierczuk K, Stanek J, Zawadzka-Kazimierczuk A et al (2013) High-dimensional NMR spectra for structural studies of biomolecules. ChemPhysChem 14:3015–3025

    Article  CAS  PubMed  Google Scholar 

  • Kern T, Schanda P, Brutscher B (2008) Sensitivity-enhanced IPAP-SOFAST-HMQC for fast-pulsing 2D NMR with reduced radiofrequency load. J Magn Reson 190:333–338

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Szyperski T (2004) GFT NMR experiments for polypeptide backbone and 13Cβ chemical shift assignment. J Biomol NMR 28:117–130

    Article  CAS  PubMed  Google Scholar 

  • Kjaergaard M, Poulsen FM (2011) Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. J Biomol NMR 50:157–165

    Article  CAS  PubMed  Google Scholar 

  • Kjaergaard M, Poulsen FM (2012) Disordered proteins studied by chemical shifts. Prog NMR Spectrosc 60:42–51

    Article  CAS  Google Scholar 

  • Kjaergaard M, Brander S, Poulsen FM (2011) Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J Biomol NMR 49:139–149

    Article  CAS  PubMed  Google Scholar 

  • Konrat R, Yang D, Kay LE (1999) A 4D TROSY-based pulse scheme for correlating 1HNi, 15Ni, 13Ca i, 13C'i -1 chemical shifts in high molecular weight, 15N, 13C, 2H labeled proteins. J Biomol NMR 15:309–313

    Article  CAS  PubMed  Google Scholar 

  • Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes – a leap in NMR technology. Prog NMR Spectrosc 46:131–155

    Article  CAS  Google Scholar 

  • Kumar D, Hosur RV (2011) hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone (1HN, 15N and 13C') resonances in 15N/13C-labeled proteins. Magn Reson Chem 49:575–583

    Article  CAS  PubMed  Google Scholar 

  • Kupce E, Freeman R (2003) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125:13958–13959

    Article  CAS  PubMed  Google Scholar 

  • Kupce E, Nishida T, Freeman R (2003) Hadamard NMR spectroscopy. Prog NMR Spectr 42:
95–122

    Article  CAS  Google Scholar 

  • Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169

    Article  CAS  PubMed  Google Scholar 

  • Lescop E, Rasia R, Brutscher B (2008) Hadamard amino-acid-type edited NMR experiment for fast protein resonance assignment. J Am Chem Soc 130:5014–5015

    Article  CAS  PubMed  Google Scholar 

  • Levitt MH, Freeman R, Frenkiel T (1982) Broadband heteronuclear decoupling. J Magn Reson 47:328–330

    CAS  Google Scholar 

  • Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  • Logan TM, Olejniczak ET, Xu RX et al (1992) Side chain and backbone assignments in isotopically labeled proteins from two heteronuclear triple resonance experiments. FEBS Lett 314:413–418

    Article  CAS  PubMed  Google Scholar 

  • Logan TM, Olejniczak ET, Xu RX et al (1993) A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments. J Biomol NMR 3:225–231

    Article  CAS  PubMed  Google Scholar 

  • Löhr F, Rüterjans H (1995) A new triple-resonance experiment for the sequential assignment of backbone resonances in proteins. J Biomol NMR 6:189–197

    Article  PubMed  Google Scholar 

  • Löhr F, Rüterjans H (1997) HNCO-E.COSY, a simple method for the stereospecific assignment of side-chain amide protons in proteins. J Magn Reson 124:255–258

    Article  PubMed  Google Scholar 

  • López-Méndez B, Güntert P (2006) Automated protein structure determination from NMR spectra. J Am Chem Soc 128:13112–13122

    Article  PubMed  CAS  Google Scholar 

  • Luan T, Jaravine V, Yee A et al (2005) Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition. J Biomol NMR 33:1–14

    Article  CAS  PubMed  Google Scholar 

  • Malmodin D, Billeter M (2005) Multiway decomposition of NMR spectra with coupled evolution periods. J Am Chem Soc 127:13486–13487

    Article  CAS  PubMed  Google Scholar 

  • Mäntylahti S, Aitio O, Hellman M et al (2010) HA-detected experiments for the backbone assignment of intrinsically disordered proteins. J Biomol NMR 47:171–181

    Article  PubMed  CAS  Google Scholar 

  • Mäntylahti S, Hellman M, Permi P (2011) Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins. J Biomol NMR 49:99–109

    Article  PubMed  CAS  Google Scholar 

  • Matsuki Y, Eddy MT, Herzfeld J (2009) Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J Am Chem Soc 131:
4648–4656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28:430–431

    Article  CAS  Google Scholar 

  • McIntosh LP, Dahlquist FW (1990) Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q Rev Biophys 23:1–38

    Article  CAS  PubMed  Google Scholar 

  • Mobli M, Stern AS, Hoch JC (2006) Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. J Magn Reson 182:96–105

    Article  CAS  PubMed  Google Scholar 

  • Mobli M, Stern AS, Bermel W et al (2010) A non-uniformly sampled 4D HCC(CO)NH-TOCSY experiment processed using maximum entropy for rapid protein sidechain assignment. J Magn Reson 204:160–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Montelione GT, Lyons BA, Emerson SD et al (1992) An efficient triple resonance experiment using carbon-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically-enriched proteins. J Am Chem Soc 114:10974–10975

    Article  CAS  Google Scholar 

  • Morris GA, Freeman R (1979) Enhancement of nuclear magnetic resonance signals by polarization transfer. J Am Chem Soc 101:760–762

    Article  CAS  Google Scholar 

  • Muhandiram DR, Kay LE (1994) Gradient-enhanced triple resonance three-dimensional NMR experiments with improved sensitivity. J Magn Reson Ser B 103:203–216

    Article  CAS  Google Scholar 

  • Mukrasch MD, Bibow S, Korukottu J et al (2009) Structural polimorphism of 441-residue tau at single residue resolution. PLoS Biol 7:e34

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus D, Williamson M (1989) The nuclear Overhauser effect in structural and conformational analysis. Wiley, New York

    Google Scholar 

  • Nietlispach D (2004) A selective intra-HN(CA)CO experiment for the backbone assignment of deuterated proteins. J Biomol NMR 28:131–136

    Article  CAS  PubMed  Google Scholar 

  • Nietlispach D, Ito Y, Laue ED (2002) A novel approach for the sequential backbone assignment of larger proteins: selective intra-HNCA and DQ-HNCA. J Am Chem Soc 124:11199–207

    Article  CAS  PubMed  Google Scholar 

  • Nováček J, Zawadzka-Kazimierczuk A, Papoušková V et al (2011) 5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J Biomol NMR 50:1–11

    Article  PubMed  CAS  Google Scholar 

  • Nováček J, Haba NY, Chill JH et al (2012) 4D Non-uniformly sampled HCBCACON and 1J(NCα)-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins. J Biomol NMR 53:139–148

    Article  PubMed  CAS  Google Scholar 

  • Nováček J, Janda L, Dopitová R et al (2013) Efficient protocol for backbone and side-chain assignments of large, intrinsically disordered proteins: transient secondary structure analysis of 49.2 kDa microtubule associated protein 2c. J Biomol NMR 56:291–301

    Article  PubMed  CAS  Google Scholar 

  • O’Hare B, Benesi AJ, Showalter SA (2009) Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution. J Magn Reson 200:354–358

    Article  PubMed  CAS  Google Scholar 

  • Olejniczak ET, Fesik SW (1994) Two dimensional nuclear magnetic resonance method for identifying the Hα-Cα signals of amino acid residues preceding prolines. J Am Chem Soc 116:2215–2216

    Article  CAS  Google Scholar 

  • Otten R, Wood K, Mulder FAA (2009) Comprehensive determination of 3JHNHα for unfolded proteins using 13C'-resolved spin-echo difference spectroscopy. J Biomol NMR 45:343–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmer AG III (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640

    Article  CAS  PubMed  Google Scholar 

  • Palmer AG III, Massi F (2006) Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem Rev 106:1700–1719

    Article  CAS  PubMed  Google Scholar 

  • Palmer AG III, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  CAS  PubMed  Google Scholar 

  • Panchal SC, Bhavesh NS, Hosur RV (2001) Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations (13C, 15N) labeled proteins: application to unfolded proteins. J Biomol NMR 20:135–147

    Article  CAS  PubMed  Google Scholar 

  • Pantoja-Uceda D, Santoro J (2008) Amino acid type identification in NMR spectra of proteins via β- and γ-carbon edited experiments. J Magn Reson 195:187–195

    Article  CAS  PubMed  Google Scholar 

  • Pantoja-Uceda D, Santoro J (2012) New amino acid residue type identification experiments valid for protonated and deuterated proteins. J Biomol NMR 54:145–153

    Article  CAS  PubMed  Google Scholar 

  • Pellecchia M, Wider G, Iwai H et al (1997) Arginine side chain assignments in uniformly 15N-labeled proteins using the novel 2D HE(NE)HGHH experiment. J Biomol NMR 10:
193–197

    Article  CAS  Google Scholar 

  • Peng JW, Wagner G (1992) Mapping of spectral density function using heteronuclear NMR relaxation measurements. J Magn Reson 98:308–332

    CAS  Google Scholar 

  • Peng JW, Wagner G (1994) Investigation of protein motions via relaxation measurements. Methods Enzymol 239:563–596

    Article  CAS  PubMed  Google Scholar 

  • Pervushin K, Riek R, Wider G et al (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piai A, Hošek T, Gonnelli L et al (2014) “CON-CON” assignment strategy for highly flexible intrinsically disordered proteins. J Biomol NMR 60:209–218

    Article  CAS  PubMed  Google Scholar 

  • Purcell EM, Torrey HC, Pound RV (1946) Resonance absoption by nuclear magnetic moments in solid. Phys Rev 69:37–38

    Article  CAS  Google Scholar 

  • Rao NS, Legault P, Muhandiram DR et al (1996) NMR pulse schemes for the sequential assignment of arginine side-chain Hε protons. J Magn Reson B 113:272–276

    Article  CAS  PubMed  Google Scholar 

  • Redfield AG (1957) On the theory of relaxation processes. IBM. J Res Develop 1:19–31

    Google Scholar 

  • Rios C B, Feng W, Tashiro M et al (1996) Phase labeling of C-H and C-C spin-system topologies: application in constant-time PFG-CBCA(CO)NH experiments for discriminating amino acid spin-system types. J Biomol NMR 8:345–350

    Article  CAS  PubMed  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Progr NMR Spectrosc 34:93–158

    Article  CAS  Google Scholar 

  • Schanda P (2009) Fast-pulsing longitudinal relaxation optimized techniques: enriching the toolbox. Prog NMR Spectrosc 55:238–265

    Article  CAS  Google Scholar 

  • Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015

    Article  CAS  PubMed  Google Scholar 

  • Schanda P, Forge V, Brutscher B (2006a) HET-SOFAST NMR for fast detection of structural compactness and heterogeneity along polypeptide chains. Magn Reson Chem 44:S177–S184

    Google Scholar 

  • Schanda P, Van Melckebeke H, Brutscher B (2006b) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043

    Article  CAS  PubMed  Google Scholar 

  • Schleucher J, Sattler M, Griesinger C (1993) Coherence selection by gradients without signal attenuation: application to the three-dimensional HNCO experiment. Angew Chem Int Ed Engl 32:1489–1491

    Article  Google Scholar 

  • Schubert M, Smalla M, Schmieder P et al (1999) MUSIC in triple-resonance experiments: amino acid type-selective 1H-15N correlations. J Magn Reson 141:34–43

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Oschkinat H, Schmieder P (2001a) MUSIC and aromatic residues: amino acid type-selective 1H-15N correlations, III. J Magn Reson 153:186–192

    Article  CAS  PubMed  Google Scholar 

  • Schubert M, Oschkinat H, Schmieder P (2001b) MUSIC, selective pulses, and tuned delays: amino acid-type selective 1H-15N correlations, II. J Magn Reson 148:61–72

    Article  CAS  PubMed  Google Scholar 

  • Schwarzinger S, Kroon GJ, Foss TR et al (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123:2970–2978

    Article  CAS  PubMed  Google Scholar 

  • Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253

    Article  CAS  PubMed  Google Scholar 

  • Selenko P, Frueh DP, Elsaesser SJ et al (2008) In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat Struct Mol Biol 15:321–329

    Article  CAS  PubMed  Google Scholar 

  • Serber Z, Selenko P, Hänsel R et al (2006) Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat Protoc 1:2701–2709

    Article  CAS  PubMed  Google Scholar 

  • Shaka AJ, Keeler J, Freeman R (1983a) Evaluation of a new broadband decoupling sequence: WALTZ-16. J Magn Reson 53:313–340

    CAS  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T et al (1983b) An improved sequence for broadband decoupling: WALTZ-16. J Magn Reson 52:335–338

    CAS  Google Scholar 

  • Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552

    CAS  Google Scholar 

  • Shaka AJ, Lee CJ, Pines A (1988) Iterative schemes for bilinear operators; application to spin decoupling. J Magn Reson 77:274–293

    Google Scholar 

  • Shimba N, Stern AS, Craik CS et al (2003) Elimination of 13Cɑ splitting in protein NMR spectra by deconvolution with maximum entropy reconstruction. J Am Chem Soc 125:2382–2383

    Article  CAS  PubMed  Google Scholar 

  • Shimba N, Kovacs H, Stern AS et al (2004) Optimization of 13C direct detection NMR methods. J Biomol NMR 30:175–179

    Article  CAS  PubMed  Google Scholar 

  • Shirakawa M, Wälchli M, Shimizu M et al (1995) The use of heteronuclear cross-polarization for backbone assignment of 2H-, 15N- and 13C-labeled proteins: A pulse scheme for triple-resonance 4D correlation of sequential amide protons and 15N. J Biomol NMR 5:323–326

    Article  CAS  PubMed  Google Scholar 

  • Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565

    Article  CAS  Google Scholar 

  • Solyom Z, Schwarten M, Geist L et al (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321

    Article  CAS  PubMed  Google Scholar 

  • Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Ca and Cb 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113:5490–5492

    Article  CAS  Google Scholar 

  • Staykova DK, Fredriksson J, Bermel W et al (2008) Assignment of protein NMR spectra based on projections, multi-way decomposition and a fast correlation approach. J Biomol NMR 42:87–97

    Article  CAS  PubMed  Google Scholar 

  • Szyperski T, Wider G, Bushweller JH et al (1993a) 3D 13C-15N-heteronuclear two-spin coherence spectroscopy for polypeptide backbone assignments in 13C-15N-double-labeled proteins. J Biomol NMR 3:127–132

    CAS  PubMed  Google Scholar 

  • Szyperski T, Wider G, Bushweller JH et al (1993b) Reduced dimensionality in triple resonance experiments. J Am Chem Soc 115:9307–9308

    Article  CAS  Google Scholar 

  • Takeuchi K, Heffron G, Sun ZY et al (2010) Nitrogen-detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments. J Biomol NMR 47:
271–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamiola K, Acar B, Mulder FAA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132:18000–18003

    Article  CAS  PubMed  Google Scholar 

  • Theillet FX, Kalmar L, Tompa P et al (2013) The alphabet of intrinsic disorder: I. Act like a Pro: on the abundance and roles of proline residues in intrinsically disordered proteins. Intr Dis Prot 1:e24360

    Google Scholar 

  • Tjandra N, Grzesiek S, Bax A (1996) Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human Ubiquitin resulting from relaxation interference and residual dipolar coupling. J Am Chem Soc 118:6264–6272

    Article  CAS  Google Scholar 

  • Tollinger M, Skrynnikov NR, Mulder FAA et al (2001) Slow dynamics in folded and unfolded states of an SH3 domain. J Am Chem Soc 123:11341–11352

    Article  CAS  PubMed  Google Scholar 

  • Tolman J R, Flanagan JM, Kennedy MA et al (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci U S A 92:9279–9283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  CAS  PubMed  Google Scholar 

  • Tong KI, Yamamoto M, Tanaka T (2008) A simple method for amino acid selective isotope labeling of recombinant proteins in E. coli. J Biomol NMR 42:59–67

    Article  CAS  PubMed  Google Scholar 

  • Tugarinov V, Kay LE, Ibraghimov I et al (2005) High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J Am Chem Soc 127:2767–2775

    Article  CAS  PubMed  Google Scholar 

  • Tycko R (2006) Solid-state NMR as a probe of amyloid structure. Prot Pepr Lett 13:229–34

    Article  CAS  Google Scholar 

  • Vasos PR, Hall JB, Kümmerle R et al (2006) Measurement of 15N relaxation in deuterated amide groups in proteins using direct nitrogen detection. J Biomol NMR 36:27–36

    Article  CAS  PubMed  Google Scholar 

  • Vuister GW, Bax A (1993) Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNHa) coupling constants in 15N enriched proteins. J Am Chem Soc 115:
7772–7777

    Article  CAS  Google Scholar 

  • Wangsness RK, Bloch F (1953) The dynamical theory of nuclear induction. Phys Rev 89:728–739

    Article  CAS  Google Scholar 

  • Waugh JS (1982) Theory of broadband spin decoupling. J Magn Reson 50:30–49

    CAS  Google Scholar 

  • Weisemann R, Rüterjans H, Bermel W (1993) 3D triple-resonance NMR techniques for the sequential assignment of NH and 15N resonances in 15N- and 13C-labelled proteins. J Biomol NMR 3:113–120

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C chemical shift index: a simple method for the identification of protein secondary structure using 13C chemical shift data. J Biomol NMR 4:171–180

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31:1647–1651

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Bigam CG, Holm A et al (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81

    Article  CAS  PubMed  Google Scholar 

  • Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the α- and β-carbon resonances in proteins. J Magn Reson B 101:201–205

    Article  CAS  Google Scholar 

  • Wittekind M, Metzler WJ, Mueller L (1993) Selective correlations of amide groups to glycine alpha protons in proteins. J Magn Reson 101:214–217

    Article  CAS  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Yao X, Becker S, Zweckstetter M (2014) J Biomol NMR 60(4):231–240

    Google Scholar 

  • Xia Y, Arrowsmith CH, Szyperski T (2002) Novel projected 4D triple resonance experiments for polypeptide backbone chemical shift assignment. J Biomol NMR 24:41–50

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Arrowsmith CH, Muhandiram DR et al (1994) A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J Am Chem Soc 116:11655–11666

    Article  CAS  Google Scholar 

  • Yamazaki T, Pascal SM, Singer AU et al (1995) NMR pulse schemes for the sequence-specific assignment of arginine guanidino 15N and 1H chemical shifts in proteins. J Am Chem Soc 117:3556–3564

    Article  CAS  Google Scholar 

  • Yang D, Kay LE (1999) TROSY triple-resonance four-dimensional NMR spectroscopy of a 46 ns tumbling protein. J Am Chem Soc 121:2571–2575

    Article  CAS  Google Scholar 

  • Ying J, Li F, Lee JH et al (2014) 13Ca decoupling during direct observation of carbonyl resonances in solution NMR of isotopically enriched proteins. J Biomol NMR 60:15–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zawadzka-Kazimierczuk A, Kazimierczuk K, Koźmiński W (2010) A set of 4D NMR experiments of enhanced resolution for easy resonance assignment in proteins. J Magn Reson 202:109–116

    Article  CAS  PubMed  Google Scholar 

  • Zawadzka-Kazimierczuk A, Koźmiński W, Billeter M (2012a) TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra. J Biomol NMR 54:81–95

    Article  CAS  PubMed  Google Scholar 

  • Zawadzka-Kazimierczuk A, Koźmiński W, Sanderová H et al (2012b) High dimensional and high resolution pulse seqeunces for backbone resonance assignment of intrinsically disordered proteins. J Biomol NMR 52:329–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang YZ (1995) Protein and peptide structure and interactions studied by hydrogen exchange and NMR. University of Pennsylvania, Philadelphia

    Google Scholar 

  • Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernhard Brutscher , Isabella C. Felli or Roberta Pierattelli .

Editor information

Editors and Affiliations

Appendix

Appendix

Table A.1 High-multidimensional 1H detected experiments for backbone and side-chain resonance assignment
Table A.2 High-multidimensional 13C detected experiments for backbone and side-chain resonance assignment

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brutscher, B. et al. (2015). NMR Methods for the Study of Instrinsically Disordered Proteins Structure, Dynamics, and Interactions: General Overview and Practical Guidelines. In: Felli, I., Pierattelli, R. (eds) Intrinsically Disordered Proteins Studied by NMR Spectroscopy. Advances in Experimental Medicine and Biology, vol 870. Springer, Cham. https://doi.org/10.1007/978-3-319-20164-1_3

Download citation

Publish with us

Policies and ethics