Towards Understanding Protein Disorder In-Cell

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 870)


Investigating the activity and structure of cellular biochemical machinery at atomic resolution has been a point of paramount significance for understanding health and disease over the decades. The underlying molecular mechanisms are primarily studied in vitro. Nuclear magnetic resonance (NMR) is a technique that allows to look into cells and study proteins and other constituents, thanks to careful experimental design and technological advances (spectrometer sensitivity and pulse sequence design). Here we outline current applications of the technique and propose a realistic future for the field.


In-cell NMR Isotopic labeling Cell types Cell extracts 



Cesyen Cedeño and Hadas Raveh-Amit were fellows in the IDPbyNMR Marie Curie project of the European Commission, 7th Framework Programme (contract no. 264257), and this work has been partially supported by this project. Peter Tompa acknowledges the Research Foundation Flanders (FWO) Odysseus grant G.0029.12.


  1. Amata I, Maffei M, Igea A et al (2013) Multi-phosphorylation of the intrinsically disordered unique domain of c-Src studied by in-cell and real-time NMR spectroscopy. Chembiochem 14:1820–1827. doi:10.1002/cbic.201300139CrossRefPubMedGoogle Scholar
  2. Banci L, Barbieri L, Bertini I et al (2013) Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol 9:297–299. doi:10.1038/nchembio.1202PubMedCentralCrossRefPubMedGoogle Scholar
  3. Barbieri L, Luchinat E, Banci L (2014) Structural insights of proteins in sub-cellular compartments: In-mitochondria NMR. Biochim Biophys Acta—Mol Cell Res 1843:2492–2496. doi:10.1016/j.bbamcr.2014.06.009CrossRefGoogle Scholar
  4. Barnes CO, Pielak GJ (2011) In-cell protein NMR and protein leakage. Proteins 79:347–351. doi:10.1002/prot.22906PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bekei B, Rose HM, Herzig M et al (2012a) In-cell NMR in mammalian cells: part 1. Methods Mol Biol 895:43–54. doi:10.1007/978-1-61779-927-3_4CrossRefPubMedGoogle Scholar
  6. Bekei B, Rose HM, Herzig M et al (2012b) In-cell NMR in mammalian cells: part 2. ­Methods Mol Biol 895:55–66. doi:10.1007/978-1-61779-927-3_5CrossRefPubMedGoogle Scholar
  7. Bertini I, Felli IC, Gonnelli L et al (2011) 13C direct-detection biomolecular NMR spectroscopy in living cells. Angew Chem Int Ed Engl 50:2339–2341. doi:10.1002/anie.201006636CrossRefPubMedGoogle Scholar
  8. Binolfi A, Theillet F-X, Selenko P (2012) Bacterial in-cell NMR of human α-synuclein: a disordered monomer by nature? Biochem Soc Trans 40:950–954.CrossRefPubMedGoogle Scholar
  9. Bodart J-F, Wieruszeski J-M, Amniai L et al (2008) NMR observation of Tau in Xenopus oocytes. J Magn Reson 192:252–257. doi:10.1016/j.jmr.2008.03.006CrossRefPubMedGoogle Scholar
  10. Burz DS, Shekhtman A (2010) The STINT-NMR method for studying in-cell protein-protein interactions. Curr Protoc Protein Sci Chapter 17: Unit 17.11. doi:10.1002/0471140864.ps1711s61Google Scholar
  11. Cai N, Li M, Qu J et al (2012) Post-translational modulation of pluripotency. J Mol Cell Biol 4:262–265. doi:10.1093/jmcb/mjs031CrossRefPubMedGoogle Scholar
  12. Cino EA, Karttunen M, Choy W-Y (2012) Effects of molecular crowding on the dynamics of ­intrinsically disordered proteins. PLoS One 7:e49876. doi:10.1371/journal.pone.0049876PubMedCentralCrossRefPubMedGoogle Scholar
  13. Croke RL, Sallum CO, Watson E et al (2008) Hydrogen exchange of monomeric α-synuclein shows unfolded structure persists at physiological temperature and is ­independent of molecular crowding in Escherichia coli. Protein Sci 17:1434–1445. doi:10.1110/ps.033803.107PubMedCentralCrossRefPubMedGoogle Scholar
  14. Crowley PB, Chow E, Papkovskaia T (2011) Protein interactions in the Escherichia coli cytosol: an impediment to in-cell NMR spectroscopy. ChemBioChem 12:1043–1048. doi:10.1002/cbic.201100063CrossRefPubMedGoogle Scholar
  15. Dedmon MM, Patel CN, Young GB et al (2002) FlgM gains structure in living cells. Proc Natl Acad Sci U S A 99:12681–12684. doi:10.1073/pnas.202331299PubMedCentralCrossRefPubMedGoogle Scholar
  16. Diana D, Russomanno A, De Rosa L et al (2015) Functional binding surface of a β-Hairpin VEGF receptor targeting peptide determined by NMR spectroscopy in living cells. Chem—A Eur J 21:91–95. doi:10.1002/chem.201403335CrossRefGoogle Scholar
  17. Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604.CrossRefPubMedGoogle Scholar
  18. Felli IC, Gonnelli L, Pierattelli R (2014) In-cell 13C NMR spectroscopy for the study of intrinsically disordered proteins. Nat Protoc 9:2005–2016.CrossRefPubMedGoogle Scholar
  19. Gil S, Hošek T, Solyom Z et al (2013) NMR ­spectroscopic studies of intrinsically disordered proteins at near-physiological conditions. ­Angew Chem Int Ed Engl 52:11808–11812. doi:10.1002/anie.201304272CrossRefPubMedGoogle Scholar
  20. Granata D, Camilloni C, Vendruscolo M et al (2013) Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics. Proc Natl Acad Sci U S A 110:6817–6822. doi:10.1073/pnas.1218350110PubMedCentralCrossRefPubMedGoogle Scholar
  21. Hamatsu J, O’Donovan D, Tanaka T et al (2013) High-resolution heteronuclear multidimensional NMR of proteins in living insect cells using a baculovirus protein expression system. J Am Chem Soc 135:1688–1691. doi:10.1021/ja310928uCrossRefPubMedGoogle Scholar
  22. Inomata K, Ohno A, Tochio H et al (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458:106–109. doi:10.1038/nature07839CrossRefPubMedGoogle Scholar
  23. Li C, Liu M (2013) Protein dynamics in living cells studied by in-cell NMR spectroscopy. FEBS Lett 587:1008–1011. doi:10.1016/j.febslet.2012.12.023CrossRefPubMedGoogle Scholar
  24. Li C, Charlton LM, Lakkavaram A et al (2008) Differential dynamical effects of macromolecular crowding on an intrinsically ­disordered protein and a globular protein: implications for in-cell NMR spectroscopy. J Am Chem Soc 130:6310–6311. doi:10.1021/ja801020zPubMedCentralCrossRefPubMedGoogle Scholar
  25. Li C, Wang G-F, Wang Y et al (2010) Protein 19F NMR in Escherichia coli. J Am Chem Soc 132:321–327. doi:10.1021/ja907966nPubMedCentralCrossRefPubMedGoogle Scholar
  26. Liokatis S, Dose A, Schwarzer D et al (2010) Simultaneous detection of protein phosphorylation and acetylation by high-resolution NMR spectroscopy. J Am Chem Soc 132:14704–14705. doi:10.1021/ja106764yCrossRefPubMedGoogle Scholar
  27. Liokatis S, Stützer A, Elsässer SJ et al (2012) Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Nat Struct Mol Biol 19:819–823. doi:10.1038/nsmb.2310CrossRefPubMedGoogle Scholar
  28. Luchinat E, Barbieri L, Rubino JT et al (2014) In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Nat Commun 5:5502.CrossRefPubMedGoogle Scholar
  29. McNulty BC, Young GB, Pielak GJ (2006) Macromolecular crowding in the Escherichia coli periplasm maintains α-synuclein disorder. J Mol Biol 355:893–897. doi:10.1016/j.jmb.2005.11.033CrossRefPubMedGoogle Scholar
  30. Moretto-Zita M, Jin H, Shen Z et al (2010) Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc Natl Acad Sci U S A 107:13312–13317. doi:10.1073/pnas.1005847107PubMedCentralCrossRefPubMedGoogle Scholar
  31. Ogino S, Kubo S, Umemoto R et al (2009) Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. J Am Chem Soc 131:10834–10835. doi:10.1021/ja904407wCrossRefPubMedGoogle Scholar
  32. Ozenne V, Bauer F, Salmon L et al (2012) Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics 28:1463–1470. doi:10.1093/bioinformatics/bts172CrossRefPubMedGoogle Scholar
  33. Sakai T, Tochio H, Tenno T et al (2006) In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. J Biomol NMR 36:179–188. doi:10.1007/s10858-006-9079-9CrossRefPubMedGoogle Scholar
  34. Sakakibara D, Sasaki A, Ikeya T et al (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–105. doi:10.1038/nature07814CrossRefPubMedGoogle Scholar
  35. Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253. doi:10.1016/j.jsb.2007.04.001CrossRefPubMedGoogle Scholar
  36. Selenko P, Serber Z, Gadea B et al (2006) Quantitative NMR analysis of the protein GB1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci U S A 103:11904–11909. doi:10.1073/pnas.0604667103PubMedCentralCrossRefPubMedGoogle Scholar
  37. Selenko P, Frueh DP, Elsaesser SJ et al (2008) In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat Struct Mol Biol 15:321–329. doi:10.1038/nsmb.1395CrossRefPubMedGoogle Scholar
  38. Serber Z, Ledwidge R, Miller SM et al (2001) Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. J Am Chem Soc 123:8895–8901.CrossRefPubMedGoogle Scholar
  39. Serber Z, Straub W, Corsini L et al (2004) Methyl groups as probes for proteins and complexes in in-cell NMR experiments. J Am Chem Soc 126:7119–7125. doi:10.1021/ja049977kCrossRefPubMedGoogle Scholar
  40. Sharei A, Zoldan J, Adamo A et al (2013) A vector-free microfluidic platform for intracellular delivery. Proc Natl Acad Sci U S A 110:2082–2087. doi:10.1073/pnas.1218705110PubMedCentralCrossRefPubMedGoogle Scholar
  41. Solyom Z, Schwarten M, Geist L et al (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321. doi:10.1007/s10858-013-9715-0CrossRefPubMedGoogle Scholar
  42. Theillet F-X, Liokatis S, Jost JO et al (2012) Site-specific mapping and time-resolved monitoring of lysine methylation by high-resolution NMR spectroscopy. J Am Chem Soc 134:7616–7619. doi:10.1021/ja301895fCrossRefPubMedGoogle Scholar
  43. Theillet F-X, Binolfi A, Frembgen-Kesner T et al (2014) Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 114:6661–6714. doi:10.1021/cr400695pPubMedCentralCrossRefPubMedGoogle Scholar
  44. Thongwichian R, Selenko P (2012) In-cell NMR in Xenopus laevis oocytes. Methods Mol Biol 895:33–41. doi:10.1007/978-1-61779-927-3_3CrossRefPubMedGoogle Scholar
  45. Wang Q, Zhuravleva A, Gierasch LM (2011) Exploring weak, transient protein-protein interactions in crowded in vivo environments by in-cell nuclear magnetic resonance spectroscopy. BioChemistry 50:9225–9236. doi:10.1021/bi201287ePubMedCentralCrossRefPubMedGoogle Scholar
  46. Williams SP, Haggie PM, Brindle KM (1997) 19F NMR measurements of the rotational mobility of proteins in vivo. Biophys J 72:490–498. doi:10.1016/S0006-3495(97)78690-9PubMedCentralCrossRefPubMedGoogle Scholar
  47. Xie J, Thapa R, Reverdatto S et al (2009) Screening of small molecule interactor library by using in-cell NMR spectroscopy (SMILI-NMR). J Med Chem 52:3516–3522. doi:10.1021/jm9000743PubMedCentralCrossRefPubMedGoogle Scholar
  48. Xue B, Oldfield CJ, Van Y et al (2012) Protein intrinsic disorder and induced pluripotent stem cells. Mol Biosyst 8:134–150. doi:10.1039/c1mb05163fGoogle Scholar
  49. Zigoneanu IG, Yang YJ, Krois AS et al (2012) Interaction of α-synuclein with vesicles that mimic mitochondrial membranes. Biochim Biophys Acta 1818:512–519. doi:10.1016/j.bbamem.2011.11.024PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.VIB Department of Structural BiologyVrije Universiteit BrusselBrusselsBelgium
  2. 2.BioTalentum LtdGodolloHungary
  3. 3.Institute of Enzymology, Biological Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations