Friction Stir Welding: Scope and Recent Development

  • Rahul Jain
  • Kanchan Kumari
  • Ram Kumar Kesharwani
  • Sachin Kumar
  • Surjya K. PalEmail author
  • Shiv B. Singh
  • Sushanta K. Panda
  • Arun K. Samantaray
Part of the Materials Forming, Machining and Tribology book series (MFMT)


Friction Stir Welding (FSW) is a new solid-state welding technique which finds application in various industries. This chapter introduces the process, basic mechanism, application, and recent research developments. Research work in this book chapter is broadly divided in two parts: experimental-based, and finite element modeling (FEM)-based approaches of the FSW process. In the experimental studies, three recent developments are presented in this chapter: first, a unique twin-tool concept to modify the FSW process and provide alternative to multi-pass FSW; second, feasibility of using ultrasonic coupled with FSW is studied to reduce the amount of force generated during the process and improve the process efficiency; and finally, formability study of friction stir welded blank is presented. Formability of welded blank plays a vital factor for different industrial application, especially in automobile industry. In the second part, FEM method is implemented to simulate the process. Different modeling techniques are also discussed. A case study in each case is presented with sample results, to have a better understanding on the process and development.


Friction Stir Welding Welding Speed Work Piece Friction Stir Welding Ultrasonic Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yoshihiro K (2013) Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass production vehicle. Ind Robot Int J 40(3):208–212CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Mishra RS, Mahoney MW (2007) Friction stir welding and processing. ASM internationalGoogle Scholar
  4. 4.
    Cabello MA, Ruckert G, Huneau B, Sauvage X, Marya S (2008) Comparison of TIG welded and friction stir welded Al-4.5 Mg-0.26Sc alloy. J Mater Process Technol 197:337–343CrossRefGoogle Scholar
  5. 5.
    Ericsson M, Sandstorm R (2003) Influence of welding speed on fatigue of friction stir weld and comparison with MIG and TIG. Int J Fatigue 25:1379–1387CrossRefGoogle Scholar
  6. 6.
    Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1991) G.B. Patent 9125978.8Google Scholar
  7. 7.
    Nandan R, Debroy T, Bhadeshia HKDH (2008) Recent advances in friction stir welding: process, weldment and properties. Progr Mater Sci 53:980–1023Google Scholar
  8. 8. Accessed 19 Mar 2015 at 8:19 AM
  9. 9.
    Toros S, Ozturk F, Kacar I (2008) Review of warm forming of aluminum–magnesium alloys. J Mater Process Technol 207(1–3):1–12CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Liu X, Lan S, Ni J (2014) Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. J Mater Des 59:50–62CrossRefGoogle Scholar
  12. 12.
    Uzun H, Dalle C, Argagnotto A, Ghidini T, Gambaro C (2005) Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel. Mater Des 26:41–46CrossRefGoogle Scholar
  13. 13.
    Coelho RS, Kostka A, Santos JF, Kaysser-pyzalla A (2012) Friction-stir dissimilar welding of aluminium alloy to high strength steels: mechanical properties and their relation to microstructure. Mater Sci Eng, A 556:175–183CrossRefGoogle Scholar
  14. 14.
    Lee W, Schmuecker M, Mercardo A, Biallas G, Jung S (2006) Interfacial reaction in steel–aluminum joints made by friction stir welding. Scripta Mater 55:355–358CrossRefGoogle Scholar
  15. 15.
    Chen C, Kovacevic R (2004) Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding. Int J Mach Tools Manuf 44(11):1205–1214CrossRefGoogle Scholar
  16. 16.
    Sato YS, Park SHC, Michiuchi M, Kokawa H (2004) Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scripta Mater 50(9):1233–1236CrossRefGoogle Scholar
  17. 17.
    Fu B, Qin G, Li F, Meng X, Zhang J, Wu C (2015) Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy. J Mater Process Technol 218:38–47CrossRefGoogle Scholar
  18. 18.
    Galvão I, Verdera D, Gesto D, Loureiro A, Rodrigues DM (2013) Influence of aluminium alloy type on dissimilar friction stir lap welding of aluminium to copper. J Mater Process Technol 213(11):1920–1928CrossRefGoogle Scholar
  19. 19.
    Wei Xia, Datong Z, Cheng QIU, Wen Z (2012) Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding. Trans Nonferrous Met Soc China 22:1298–1306Google Scholar
  20. 20.
    Tan CW, Jiang ZG, Li LQ, Chen YB, Chen XY (2013) Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding. Mater Des 51:466–473CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Bo L, Zhang Z, Shen Y, Hu W, Luo L (2014) Dissimilar friction stir welding of Ti6Al4V alloy and aluminum alloy employing a modified butt joint configuration: influence of process variables on the weld interfaces and tensile properties. Mater Des 53:838–848Google Scholar
  23. 23.
    Hassan SF, Gupta M (2003) Development of high strength magnesium copper based hybrid composites with enhanced tensile properties. Mater Sci Technol 19–2:253–259Google Scholar
  24. 24.
    Trimble D, Monaghan J, O’Donnell GE, Donnell GEO (2012) Force generation during friction stir welding of AA2024-T3. CIRP Ann Manuf Technol 61(1):9–12CrossRefGoogle Scholar
  25. 25.
    Elangovan K, Balasubramanian V, (2007) Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater Sci Eng A 459:7–18Google Scholar
  26. 26.
    Buffa G, Hua J, Shivpuri R, Fratini L (2006) Design of the friction stir welding tool using the continuum based FEM model. Mater Sci Eng A 419(1–2):381–388CrossRefGoogle Scholar
  27. 27.
    Colligan K (1991) Material flow behavior during friction stir welding of aluminum. Adv Weld Res 229–237Google Scholar
  28. 28.
    Dickerson T, Shercliff HR, Schmidt H (2003) A weld marker technique for flow visualization in friction stir welding. In: 4th international symposium on friction stir welding, USA, pp 14–16Google Scholar
  29. 29.
    Qian J, Li J, Sun F, Xiong J, Zhang F, Lin X (2013) An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints. Scipta Materiala 68:175–178CrossRefGoogle Scholar
  30. 30.
    Kim YG, Fujii H, Tsumura T, Komazaki T, Nataka K (2006) Three defects types in friction stir welding of aluminium die casting alloy. Mater Sci Eng A 415:250–254CrossRefGoogle Scholar
  31. 31.
    Brown R, Tang W, Reynolds AP (2009) Multi-pass friction stir welding in alloy 7050-T7451: effects on weld response variables and on weld properties. Mater Sci Eng A 513:115–121CrossRefGoogle Scholar
  32. 32.
    Nataka K, Kim YG, Fujii H, Tsumura T, Komazaki T (2006) Improvement of mechanical properties of aluminium die casting alloy by multi-pass friction stir processing. Mater Sci Eng A 437:274–280CrossRefGoogle Scholar
  33. 33.
    He D, Yang K, Li M, Guo H, Li N, Lai R, Ye S (2013) Comparison of single and double pass friction stir welding of skin-stringer aviation aluminium alloy. Sci Technol Weld Join 8:610–615CrossRefGoogle Scholar
  34. 34.
    Leal RM, Loureiro A (2008) Effect of overlapping friction stir welding passes in the quality of welds of aluminium alloys. Mater Des 29:982–991CrossRefGoogle Scholar
  35. 35.
    Barhami M, Nikoo MF, Givi MKB (2015) Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes. Mater Sci Eng A 626:220–228CrossRefGoogle Scholar
  36. 36.
    Ma ZY, Sharma SR, Mishra RS (2006) Effects of multiple-pass friction stir processing on microstructure and tensile properties of a cast aluminium-silicon alloy. Scripta Mater 54:623–1626Google Scholar
  37. 37.
    Johannes LB, Mishra RS (2007) Multiple passes of friction stir processing for the creation of super plastic 7075 aluminium. Mater Sci Eng A 464:255–260CrossRefGoogle Scholar
  38. 38.
    Ma ZY, Mishra RS, Liu FC (2009) Superplastic behaviour of micro-regions in two-pass friction stir processed 7075Al alloy. Mater Sci Eng A 505:70–78CrossRefGoogle Scholar
  39. 39.
    Surekha K, Murty BS, Rao KP (2008) Microstructural characterization and corrosion behaviour of multipass friction stir processed AA2219 aluminium alloy. Surf Coat Technol 202:4057–4068CrossRefGoogle Scholar
  40. 40.
    Jana S, Mishra RS, Baumann JA, Grant G (2010) Effect of process parameters on abnormal grain growth during friction stir processing of a cast Al alloy. Mater Sci Eng A 528:189–199CrossRefGoogle Scholar
  41. 41.
    Thomas WM, Staines DJ, Watts ER, Norris IM (2005) The simultaneous use of two or more friction stir welding tools. TWI Ltd. Report, CambridgeGoogle Scholar
  42. 42.
    Thomas WM, (1999) Friction stir welding of ferrous materials: a feasibility study. In: proceedings of the first international conference on friction stir welding. Thousand Oaks, TWI, paper on CDGoogle Scholar
  43. 43.
    Mitsuo H (2000) Friction agitation joining method and friction agitation joining device. Japan Patent Application 2000-094156Google Scholar
  44. 44.
    Atsuo K, Yoshinora O, Mutsumi Y (2003) Friction stir welding method, Japan. Patent Application 2003-112271 and 2003-112272Google Scholar
  45. 45.
    Kumari K, Pal SK, Singh SB (2015) Friction stir welding by using counter-rotating twin tool. J Mater Process Technol 215:132–141CrossRefGoogle Scholar
  46. 46.
    Blaha F, Langenecker B (1955) Tensile deformation of zinc crystal under ultrasonic vibration. Naturwissenschaften 42:556Google Scholar
  47. 47.
    Lucas M, Huang ZH, Daud Y (2005) Ultrasonic compression tests on aluminium. Appl Mech Mater 3:99–104Google Scholar
  48. 48.
    Daud Y, Lucas M, Huang Z (2007) Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium. J Mater Process Technol 186(1):179–190CrossRefGoogle Scholar
  49. 49.
    Inoue M (1984) Studies on ultrasonic metal tube drawing. Memoira of Sagami Institute of Technology, vol 19, pp 1–7Google Scholar
  50. 50.
    Kumar V (2011) Understanding ultrasonic plastic assembly. Nevik Ultrasonics Publishers, NashikGoogle Scholar
  51. 51.
    Brook RJ (ed) (1991) Concise encyclopedia of advanced ceramic materials. Pergamon Press, Oxford, pp 1–2 and p 488Google Scholar
  52. 52.
    Moreland MA, Moore DO (1988) Versatile performance of ultrasonic machining. Am Ceram Soc Bull 67(6):1045–1047Google Scholar
  53. 53.
    Gilmore R (1990) Ultrasonic machining and orbital abrasion techniques. Society of Manufacturing Engineers, Transactions: AIR, NM89-419, pp 1–20Google Scholar
  54. 54.
    Kennedy DC, Grieve RJ (1975) Ultrasonic machining—a review. Produc Eng 54(9):481–486CrossRefGoogle Scholar
  55. 55.
    Chang SS, Bone GM (2005) Burr size reduction in drilling by ultrasonic assistance. Robot Comput Integr Manuf 21(4–5):442–450CrossRefGoogle Scholar
  56. 56.
    Ishikawa KI, Suwabe H, Nishide T, Uneda M (1998) A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle material. Precis Eng 22(4):196–205CrossRefGoogle Scholar
  57. 57.
    Tsujino J, Ueoka T, Hasegawa K, Fujita Y, Shiraki T, Okada T, Tamura T (1996) New methods of ultrasonic welding of metal and plastic materials. Ultrasonics 34(2):177–185CrossRefGoogle Scholar
  58. 58.
    Tsujino J, Sano T, Ogata H, Tanaka S, Harada Y (2002) Complex vibration ultrasonic welding systems with large area welding tips. Ultrasonics 40(1):361–364CrossRefGoogle Scholar
  59. 59.
    Matsuoka SI, Imai H (2009) Direct welding of different metals used ultrasonic vibration. J Mater Process Technol 209(2):954–960CrossRefGoogle Scholar
  60. 60.
    De edga, De Vries E (2004) Mechanics and mechanisms of ultrasonic metal welding. The Ohio State University. PhD ThesisGoogle Scholar
  61. 61.
    Jeng YR, Horng JH (2001) A microcontact approach for ultrasonic wire bonding in microelectronics. Trans Am Soc Mech Eng J Tribol 123(4):725–731Google Scholar
  62. 62.
    Park K (2009) Development and analysis of ultrasonic assisted friction stir welding process. Doctoral dissertation, The University of MichiganGoogle Scholar
  63. 63.
    Ruilin L, Diqiu H, Luocheng L, Shaoyong Y, Kunyu Y (2014) A study of the temperature field during ultrasonic-assisted friction-stir welding. Int J Adv Manuf Technol 73(1–4):321–327CrossRefGoogle Scholar
  64. 64.
    Amini S, Amiri MR (2014) Study of ultrasonic vibrations’ effect on friction stir welding. Int J Adv Manuf Technol 73(1–4):127–135CrossRefGoogle Scholar
  65. 65.
    Ahmadnia M, Seidanloo A, Teimouri R, Rostamiyan Y, Titrashi KG (2015) Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints. Int J Adv Manuf Technol 1–16Google Scholar
  66. 66.
    Ma HK, He DQ, Liu JS (2015) Ultrasonically assisted friction stir welding of aluminium alloy 6061. Sci Technol Weld Join 20:216–221CrossRefGoogle Scholar
  67. 67.
    Rostamiyan Y, Seidanloo A, Sohrabpoor H, Teimouri R (2014) Experimental studies on ultrasonically assisted friction stir spot welding of AA6061. Archives of Civil and Mechanical EngineeringGoogle Scholar
  68. 68.
    Kinsey BL, Wu X (2011) Tailor welded blanks for advanced manufacturing. Woodhead Publishing Limited, First Edit. UKGoogle Scholar
  69. 69.
    Mishra RS, Mahoney MW (2001) Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys. Mater Sci Forum 357–359:507–514CrossRefGoogle Scholar
  70. 70.
    Miles MP, Mahoney M, Nelson W, Mishra RS (2003) Finite element simulation of plane-strain thick plate bending of friction-stir processed 2519 aluminum. In: TMS annual meeting, pp 253–258Google Scholar
  71. 71.
    Vaze SP, Xu J, Ritter R, Colligan K, Fisher JJ (2003) Friction stir processing of aluminum alloy 5083 plate for cold bending. Mater Sci Forum 426–432(4):2979–2986CrossRefGoogle Scholar
  72. 72.
    Mahoney M, Barnes AJ, Bingel WH, Fuller C (2004) Superplastic forming of 7475 Al sheet after friction stir processing (FSP). Mater Sci Forum 447–448:505–512CrossRefGoogle Scholar
  73. 73.
    Fuller CB, Miles MP, Bingel W (2005) Thick plate bending of friction stir processed aluminum alloys. In: Friction stir welding and processing III—proceedings of a symposium sponsored by the shaping and forming committee of (MPMD) of the minerals, metals and materials society, TMS, pp 131–137Google Scholar
  74. 74.
    Sato YS, Sugiura Y, Shoji Y, Park SHC, Kokawa H, Ikeda K (2005) Effect of microstructure on postweld formability in friction stir welded Al alloy 5052. In: ASM proceedings of the international conference: trends in welding research, vol 2005, pp 387–391Google Scholar
  75. 75.
    Hirata T, Oguri T, Hagino H, Tanaka T, Chung SW, Takigawa Y, Higashi K (2007) Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy. Mater Sci Eng A 456(1–2):344–349CrossRefGoogle Scholar
  76. 76.
    Miles MP, Decker BJ, Nelson TW (2004) Formability and strength of friction-stir-welded aluminum sheets. Metall Mater Transf A Phys Metall Mater Sci 35A(11):3461–3468Google Scholar
  77. 77.
    Kumar M, Kailas SV, Narayanan RG (2013) Influence of external weld flash on the in-plane plane-strain formability of friction stir welded sheets. J Strain Anal Eng Des 48(6):376–385CrossRefGoogle Scholar
  78. 78.
    Zadpoor AA, Sinke J, Benedictus R (2008) The effects of friction stir welding on the mechanical properties and microstructure of 7000 series aluminium tailor-welded blanks. Int J Mater Form 1(Suppl 1):1311–1314CrossRefGoogle Scholar
  79. 79.
    Rodrigues DM, Chaparro BM, Leitão C, Baptista AJ, Loureiro A, Vilaça P (2007) Formability of steel and aluminium tailor welded blanks. Weld. World vol 51, no. SPEC. ISS., pp 667–676Google Scholar
  80. 80.
    Frankel GS, Xia Z (1999) Localized corrosion and stress corrosion cracking resistance of friction stir welded aluminum alloy 5454. Corrosion 55(2):139–150Google Scholar
  81. 81.
    Srinivasan PB, Dietzel W, Zettler R, dos Santos JF, Sivan V (2005) Stress corrosion cracking susceptibility of friction stir welded AA7075–AA6056 dissimilar joint. Mater Sci Eng A 392(1–2):292–300CrossRefGoogle Scholar
  82. 82.
    Okada T, Hashimoto HH, Tanikawa T, Iwaki H, Takeda S, Miyamichi J, Eguchi N, Tanaka S Oiwa, Namba K (2005) Studies on characteristics of friction stir welded joints in structural thin aluminium alloys part 2: metallurgical features and mechanical properties of friction stir welded joints. Weld World 49(3–4):83–92CrossRefGoogle Scholar
  83. 83.
    Lee W, Kim D, Kim J, Kim C, Wenner M, Okamoto K, Wagoner H, Chung K (2007) Formability and springback evaluation of friction stir welded automotive sheets. In: TMS annual meeting, pp 155–164Google Scholar
  84. 84.
    Sato YS, Sugiura Y, Shoji Y, Park SHC, Kokawa H, Ikeda K (2004) Post-weld formability of friction stir welded Al alloy 5052. Mater Sci Eng A 369(1–2):138–143CrossRefGoogle Scholar
  85. 85.
    Miles MP, Pew J, Nelson TW, Li M (2005) Formability of friction stir welded dual phase steel sheets. In: Friction stir welding and processing III—proceedings of a symposium sponsored by the shaping and forming committee of (MPMD) of the minerals, metals and materials society, TMS, pp 91–96Google Scholar
  86. 86.
    Miles MP, Melton DW, Nelson TW (2005) “Formability of friction-stir-welded dissimilar-aluminum-alloy sheets. Metall Mater Trans A Phys Metall Mater Sci 36(12):3335–3342CrossRefGoogle Scholar
  87. 87.
    Buffa G, Fratini L, Hua J, Shivpuri R (2006) Friction stir welding of tailored blanks: investigation on process feasibility. CIRP Ann Manuf Technol 55(1):279–282CrossRefGoogle Scholar
  88. 88.
    Miles M, Pew J, Nelson TW, Li M (2006) Comparison of formability of friction stir welded and laser welded dual phase 590 steel sheets. Sci Technol Weld Join 11(4):384–388CrossRefGoogle Scholar
  89. 89.
    Sato YS, Sugiura Y, Shoji Y, Park SHC, Kokawa H, Ikeda K (2006) Effect of microstructure on fracture limit strain of pseudo-plane strain deformation in friction stir welded Al alloy 5052. Keikinzoku Yosetsu/Journal Light Met Weld Constr 44(5):15–22Google Scholar
  90. 90.
    Buffa G, Fratini L, Merklein M, Staud D (2007) Investigations on the mechanical properties and formability of friction stir welded tailored blanks. Key Eng Mater 344:143–150CrossRefGoogle Scholar
  91. 91.
    Ramulu PJ, Narayanan RG, Kailas SV (2013) Forming limit investigation of friction stir welded sheets: influence of shoulder diameter and plunge depth. Int J Adv Manuf Technol 69(9–12):2757–2772CrossRefGoogle Scholar
  92. 92.
    Kesharwani RK, Panda SK, Pal SK (2014) Experimental investigations on formability of aluminum tailor friction stir welded blanks in deep drawing process. J Mater Eng Perform 24(18):1038–1049Google Scholar
  93. 93.
    Bhanodaya Kiran Babu N, Davidson MJ, Neelakanteswara Rao A, Balasubramanian K, Govindaraju M (2014) Effect of differential heat treatment on the formability of aluminium tailor welded blanks. Mater Des 55:35–42CrossRefGoogle Scholar
  94. 94.
    Yuan SJ, Hu ZL, Wang XS (2012) Evaluation of formability and material characteristics of aluminum alloy friction stir welded tube produced by a novel process. Mater Sci Eng A 543:210–216CrossRefGoogle Scholar
  95. 95.
    Silva MB, Skjoedt M, Vilaça P, Bay N, Martins PAF (2009) Single point incremental forming of tailored blanks produced by friction stir welding. J Mater Process Technol 209(2):811–820CrossRefGoogle Scholar
  96. 96.
    Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Modell Simul Mater Sci Eng 12(1):143–157CrossRefGoogle Scholar
  97. 97.
    Heurtier P, Jones MJ, Desrayaud C, Driver JH, Montheillet F, Allehaux D (2006) Mechanical and thermal modelling of friction stir welding. J Mater Process Technol 171(3):348–357CrossRefGoogle Scholar
  98. 98.
    Song M, Kovacevic R (2003) Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tools Manuf 43(6):605–615CrossRefGoogle Scholar
  99. 99.
    Song M, Kovacevic R (2004) Heat transfer modelling for both workpiece and tool in the friction stir welding process: a coupled model. Proc Inst Mech Eng Part B J Eng Manuf 218(1):17–33CrossRefGoogle Scholar
  100. 100.
    Khandkar MZH, Khan J, Reynolds AP (2003) Prediction of temperature distribution and thermal history during friction stir welding: input torque based model. Sci Technol Weld Join 8(3):165–174CrossRefGoogle Scholar
  101. 101.
    Arora A, Nandan R, Reynolds AP, DebRoy T (2009) Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scripta Mater 60(1):13–16CrossRefGoogle Scholar
  102. 102.
    Reddy JN (1993) An introduction to the finite element method, 2nd edn. McGraw-Hill Inc., New YorkGoogle Scholar
  103. 103.
    Bathe KJ (1996) Finite element procedures. Prentice Hall, Englewood CliffsGoogle Scholar
  104. 104.
    Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  105. 105.
    Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkzbMATHGoogle Scholar
  106. 106.
    Buffa G, Hua J, Shivpuri R, Fratini L (2006) A continuum based fem model for friction stir welding—model development. Mater Sci Eng A 419(1–2):389–396CrossRefGoogle Scholar
  107. 107.
    Fratini L, Buffa G, Palmeri D, Hua J, Shivpuri R (2006) Material flow in FSW of AA7075–T6 butt joints: numerical simulations and experimental verifications. Sci Technol Weld Join 11(4):412–421CrossRefGoogle Scholar
  108. 108.
    Zhang Z, Zhang HW (2008) A fully coupled thermo-mechanical model of friction stir welding. Int J Adv Manuf Technol 37(3–4):279–293CrossRefGoogle Scholar
  109. 109.
    Zhang Z, Zhang HW (2009) Numerical studies on controlling of process parameters in friction stir welding. J Mater Process Technol 209(1):241–270CrossRefGoogle Scholar
  110. 110.
    Mandal S, Rice J, Elmustafa AA (2008) Experimental and numerical investigation of the plunge stage in friction stir welding. J Mater Process Technol 203(1–3):411–419CrossRefGoogle Scholar
  111. 111.
    Alfaro I, Racineux G, Poitou A, Cueto E, Chinesta F (2009) Numerical simulation of friction stir welding by natural element methods. Int J Mater Form 2(4):225–234Google Scholar
  112. 112.
    Assidi M, Fourment L, Guerdoux S, Nelson T (2010) Friction model for friction stir welding process simulation: calibrations from welding experiments. Int J Mach Tools Manuf 50(2):143–155CrossRefGoogle Scholar
  113. 113.
    Ammouri AH, Hamade RF (2014) Correlating process parameters to thrust forces and torque in the friction stir processing of AZ31B. In: Proceedings of NAMRI/SME, 42Google Scholar
  114. 114.
    Pashazadeh H, Masoumi A, Teimournezhad J (2013) A study on material flow pattern in friction stir welding using finite element method. Proc Inst Mech Eng Part B J Eng Manuf 227(10):1453–1466CrossRefGoogle Scholar
  115. 115.
    Uyyuru RK, Kailas SV (2006) Numerical analysis of friction stir welding process. J Mater Eng Perform 15(5):505–518CrossRefGoogle Scholar
  116. 116.
    Colegrove PA, Shercliff HR (2005) 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. J Mater Process Technol 169(2):320–327CrossRefGoogle Scholar
  117. 117.
    Chen G, Shi Q, Li Y, Sun Y, Dai Q, Jia J, Wu J (2013) Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy. Comput Mater Sci 79:540–546CrossRefGoogle Scholar
  118. 118.
    Chen GQ, Shi QY, Fujiya Y, Horie T (2014) Simulation of metal flow during friction stir welding based on the model of interactive force between tool and material. J Mater Eng Perform 23(4):1321–1328CrossRefGoogle Scholar
  119. 119.
    Ji SD, Shi QY, Zhang LG, Zou AL, Gao SS, Zan LV (2012) Numerical simulation of material flow behavior of friction stir welding influenced by rotational tool geometry. Comput Mater Sci 63:218–226Google Scholar
  120. 120.
    Kim D, Badarinarayan H, Kim JH, Kim C, Okamoto K, Wagoner RH, Chung K (2010) Numerical simulation of friction stir butt welding process for AA5083-H18 sheets. Eur J Mech, A/Solids 29(2):204–215CrossRefGoogle Scholar
  121. 121.
    Nandan R, Roy GG, Lienert TJ, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55(3):883–895CrossRefGoogle Scholar
  122. 122.
    Kuykendall K, Nelson T, Sorensen C (2013) On the selection of constitutive laws used in modeling friction stir welding. Int J Mach Tools Manuf 74:74–85CrossRefGoogle Scholar
  123. 123.
    Deform manual, SFTC, version 10.2Google Scholar
  124. 124.
    Kobayashi S, Altan T (1989) Metal forming and finite element method. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rahul Jain
    • 1
  • Kanchan Kumari
    • 1
  • Ram Kumar Kesharwani
    • 1
  • Sachin Kumar
    • 1
  • Surjya K. Pal
    • 1
    Email author
  • Shiv B. Singh
    • 2
  • Sushanta K. Panda
    • 1
  • Arun K. Samantaray
    • 1
  1. 1.Mechanical Engineering DepartmentIndian Institute of TechnologyKharagpurIndia
  2. 2.Metallurgical and Materials Engineering DepartmentIndian Institute of TechnologyKharagpurIndia

Personalised recommendations