Finite Element Method in Machining Processes: A Review

  • Carlos H. LauroEmail author
  • Lincoln C. Brandão
  • Sergio L. M. Ribeiro Filho
  • Robertt A. F. Valente
  • J. Paulo Davim
Part of the Materials Forming, Machining and Tribology book series (MFMT)


An ecological production and low cost is the target of several industries. Increasingly, the product development is critical stage to obtain a great quality and fair price. This stage will define shapes and parameters that will able to reduce wastes and improve the product. However, the expense of prototypes also should be reduced, because, in general, the prototypes are more expensive that final product. The use of finite element method (FEM) can avoid much tests that reduce number of prototypes, and consequently the project cost. In the machining processes simulation, several cutting conditions can be reproduced to define the best tool and parameters in function of analyzed forces, stress, damages and others. This paper debates the use of FEM in the machining processes, shows some researches and indicates the main attributes to develop simulation studies for conventional machining and micromachining.


Residual Stress FEMFinite Element Method Friction Coefficient Flow Stress Chip Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Ministry of Education’s Coordination for the Improvement of Higher Education Personnel (CAPES). The author C.H. Lauro would like to thank Elsevier and Springer for granting permission for reuse of the published materials.


  1. 1.
    Liu PF, Zheng JY (2008) Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. Mater Sci Eng A 485:711–717. doi: 10.1016/j.msea.2008.02.023 CrossRefGoogle Scholar
  2. 2.
    Silva TAA, Panzera TH, Brandão LC et al (2012) Preliminary investigations on auxetic structures based on recycled rubber. Phys Status Solidi 249:1353–1358. doi: 10.1002/pssb.201084225 CrossRefGoogle Scholar
  3. 3.
    Özel T, Altan T (2000) Process simulation using finite element method—prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling. Int J Mach Tools Manuf 40:713–738. doi: 10.1016/S0890-6955(99)00080-2 CrossRefGoogle Scholar
  4. 4.
    Fish J, Belytschko T (2007) A first course in finite elements. doi: 10.1002/9780470510858 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Shaw MC (2004) Metal cutting principles, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  6. 6.
    Childs THC, Maekawa K, Obikawa T, Yamane Y (2000) Metal machining theory and applications. Arnold, LondonGoogle Scholar
  7. 7.
    Astakhov VP, Outeiro JC (2008) Metal cutting mechanics finite element modelling. In: Davim JP (ed) Machining. Fundamentals and recent advances, 1st edn. Springer, London, pp 13–25Google Scholar
  8. 8.
    Arrazola PJ, Özel T, Umbrello D et al (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62:695–718. doi: 10.1016/j.cirp.2013.05.006 CrossRefGoogle Scholar
  9. 9.
    Fallböhmer P, Rodrı́guez CA, Özel T, Altan T (2000) High-speed machining of cast iron and alloy steels for die and mold manufacturing. J Mater Process Technol 98:104–115. doi: 10.1016/S0924-0136(99)00311-8
  10. 10.
    Elbestawi MA, Chen L, Becze CE, El-Wardany TI (1997) High-speed milling of dies and molds in their hardened state. CIRP Ann Manuf Technol 46:57–62. doi: 10.1016/S0007-8506(07)60775-6 CrossRefGoogle Scholar
  11. 11.
    Stenberg N, Proudian J (2013) Numerical modelling of turning to find residual stresses. In: Procedia CIRP 14th CIRP conference model machining operations, vol 8, pp 258–264. doi: 10.1016/j.procir.2013.06.099
  12. 12.
    Gardner JD, Vijayaraghavan A, Dornfeld DA (2005) Comparative study of finite element simulation software. In: Lab Manuf Autom Accessed 19 Nov 2013
  13. 13.
    Amini S, Soleimanimehr H, Nategh MJ et al (2008) FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool. J Mater Process Technol 201:43–47. doi: 10.1016/j.jmatprotec.2007.11.271 CrossRefGoogle Scholar
  14. 14.
    Zanger F, Schulze V (2013) Investigations on mechanisms of tool wear in machining of Ti-6Al-4V using FEM simulation. In: Procedia CIRP 14th CIRP conference on modeling of machining operations, vol 8, pp 158–163. doi: 10.1016/j.procir.2013.06.082
  15. 15.
    Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining. Int J Mach Tools Manuf 50:174–182. doi: 10.1016/j.ijmachtools.2009.10.013 CrossRefGoogle Scholar
  16. 16.
    Muhammad R, Ahmed N, Roy A, Silberschmidt VV (2012) Numerical modelling of vibration-assisted turning of Ti-15333. Procedia CIRP 1:347–352. doi: 10.1016/j.procir.2012.04.062 CrossRefGoogle Scholar
  17. 17.
    Maranhão C, Davim JP (2010) Finite element modelling of machining of AISI 316 steel: numerical simulation and experimental validation. Simul Model Pract Theory 18:139–156. doi: 10.1016/j.simpat.2009.10.001 CrossRefGoogle Scholar
  18. 18.
    John MRS, Shrivastava K, Banerjee N et al (2013) Finite element method-based machining simulation for analyzing surface roughness during turning operation with HSS and carbide insert tool. Arab J Sci Eng 38:1615–1623. doi: 10.1007/s13369-013-0541-1 CrossRefGoogle Scholar
  19. 19.
    Lauro CH, Brandão LC, Januário T et al (2013) An approach to define the heat flow in drilling with different cooling systems using finite element analysis. Adv Mech Eng 2013:9. doi: 10.1155/2013/612747 CrossRefGoogle Scholar
  20. 20.
    Isbilir O, Ghassemieh E (2011) Finite element analysis of drilling of titanium alloy. In: Procedia engineering—11th international conference on the mechanical behavior of materials, vol 10, pp 1877–1882. doi: 10.1016/j.proeng.2011.04.312
  21. 21.
    Schulze V, Osterried J, Strauß T (2011) FE analysis on the influence of sequential cuts on component conditions for different machining strategies. Procedia Eng 19:318–323. doi: 10.1016/j.proeng.2011.11.119 CrossRefGoogle Scholar
  22. 22.
    Davim JP, Maranhão C, Jackson MJ et al (2007) FEM analysis in high speed machining of aluminium alloy (Al7075-0) using polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools. Int J Adv Manuf Technol 39:1093–1100. doi: 10.1007/s00170-007-1299-y CrossRefGoogle Scholar
  23. 23.
    Sartkulvanich P, Altan T, Göcmen A (2005) Effects of flow stress and friction models in finite element simulation of orthogonal cutting—a sensitivity analysis. Mach Sci Technol 9:1–26. doi: 10.1081/MST-200051211 CrossRefGoogle Scholar
  24. 24.
    Ali MH, Ansari MNM, Khidhir BA et al (2014) Simulation machining of titanium alloy (Ti-6Al-4V) based on the finite element modeling. J Brazilian Soc Mech Sci Eng 36:315–324. doi: 10.1007/s40430-013-0084-0 CrossRefGoogle Scholar
  25. 25.
    Rizzuti S, Umbrello D, Filice L, Settineri L (2010) Finite element analysis of residual stresses in machining. Int J Mater Form 3:431–434. doi: 10.1007/s12289-010-0799- CrossRefGoogle Scholar
  26. 26.
    Doman D, Warkentin A, Bauer R (2009) Finite element modeling approaches in grinding. Int J Mach Tools Manuf 49:109–116. doi: 10.1016/j.ijmachtools.2008.10.002
  27. 27.
    Özel T, Zeren E (2007) Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining. Int J Adv Manuf Technol 35:255–267. doi: 10.1007/s00170-006-0720-2 CrossRefGoogle Scholar
  28. 28.
    Benson DJ, Okazawa S (2004) Contact in a multi-material Eulerian finite element formulation. Comput Methods Appl Mech Eng 193:4277–4298. doi: 10.1016/j.cma.2003.12.061 zbMATHCrossRefGoogle Scholar
  29. 29.
    Carroll JT, Strenkowski JS (1988) Finite element models of orthogonal cutting with application to single point diamond turning. Int J Mech Sci 30:899–920. doi: 10.1016/0020-7403(88)90073-2 CrossRefGoogle Scholar
  30. 30.
    Nasr MNA, Ng E-G, Elbestawi MA (2008) A modified time-efficient FE approach for predicting machining-induced residual stresses. Finite Elem Anal Des 44:149–161. doi: 10.1016/j.finel.2007.11.005 CrossRefGoogle Scholar
  31. 31.
    Bäker M, Rösler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80:495–513. doi: 10.1016/S0045-7949(02)00023-8 CrossRefGoogle Scholar
  32. 32.
    Mamalis AG, Branis AS, Manolakos DE (2002) Modelling of precision hard cutting using implicit finite element methods. J Mater Process Technol 123:464–475. doi: 10.1016/S0924-0136(02)00133-4 CrossRefGoogle Scholar
  33. 33.
    Coelho RT, Ng E, Elbestawi MA (2007) Tool wear when turning hardened AISI 4340 with coated PcBN tools using finishing cutting conditions. Int J Mach Tools Manuf 47:263–272. doi: 10.1016/j.ijmachtools.2006.03.020 CrossRefGoogle Scholar
  34. 34.
    Hu F, Li D (2011) Modelling and simulation of milling forces using an arbitrary Lagrangian-Eulerian finite element method and support vector regression. J Optim Theory Appl 153:461–484. doi: 10.1007/s10957-011-9927-y CrossRefGoogle Scholar
  35. 35.
    Simoneau A, Ng E, Elbestawi MA (2006) Chip formation during microscale cutting of a medium carbon steel. Int J Mach Tools Manuf 46:467–481. doi: 10.1016/j.ijmachtools.2005.07.019 CrossRefGoogle Scholar
  36. 36.
    Buchkremer S, Wu B, Lung D et al (2013) FE-simulation of machining processes with a new material model. J Mater Process Technol. doi: 10.1016/j.jmatprotec.2013.10.014 zbMATHGoogle Scholar
  37. 37.
    Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48. doi: 10.1016/0013-7944(85)90052-9 CrossRefGoogle Scholar
  38. 38.
    Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121. doi: 10.1016/j.ijmachtools.2012.01.006 CrossRefGoogle Scholar
  39. 39.
    Sartkulvanich P, Koppka F, Altan T (2004) Determination of flow stress for metal cutting simulation—a progress report. J Mater Process Technol 146:61–71. doi: 10.1016/S0924-0136(03)00845-8 CrossRefGoogle Scholar
  40. 40.
    Chen G, Ren C, Yang X et al (2011) Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4 V) based on ductile failure model. Int J Adv Manuf Technol 56:1027–1038. doi: 10.1007/s00170-011-3233-6 CrossRefGoogle Scholar
  41. 41.
    Ambati R, Yuan H (2010) FEM mesh-dependence in cutting process simulations. Int J Adv Manuf Technol 53:313–323. doi: 10.1007/s00170-010-2818-9 CrossRefGoogle Scholar
  42. 42.
    Duan C, Zhang L (2012) A reliable method for predicting serrated chip formation in high-speed cutting: analysis and experimental verification. Int J Adv Manuf Technol 64:1587–1597. doi: 10.1007/s00170-012-4125-0 CrossRefGoogle Scholar
  43. 43.
    Shrot A, Bäker M (2012) Determination of Johnson-Cook parameters from machining simulations. Comput Mater Sci 52:298–304. doi: 10.1016/j.commatsci.2011.07.035 CrossRefGoogle Scholar
  44. 44.
    Umbrello D, M’Saoubi R, Outeiro JC (2007) The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel. Int J Mach Tools Manuf 47:462–470. doi: 10.1016/j.ijmachtools.2006.06.006 CrossRefGoogle Scholar
  45. 45.
    Yan H, Hua J, Shivpuri R (2007) Flow stress of AISI H13 die steel in hard machining. Mater Des 28:272–277. doi: 10.1016/j.matdes.2005.06.017 CrossRefGoogle Scholar
  46. 46.
    Becze CE, Worswick MJ, Elbestawi M (2001) High strain rate shear evaluation and characterization of Aisi D2 tool steel in its hardened state. Mach Sci Technol 5:131–149. doi: 10.1081/MST-100103182
  47. 47.
    Liu R, Melkote S, Pucha R et al (2013) An enhanced constitutive material model for machining of Ti–6Al–4 V alloy. J Mater Process Technol 213:2238–2246. doi: 10.1016/j.jmatprotec.2013.06.015 CrossRefGoogle Scholar
  48. 48.
    Moćko W, Kowalewski ZL (2013) Perforation test as an accuracy evaluation tool for a constitutive model of austenitic steel. Arch Metall Mater 58:1105–1110. doi: 10.2478/amm-2013-0133 Google Scholar
  49. 49.
    Zerilli FJ, Armstrong RW (1987) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61:1816. doi: 10.1063/1.338024 CrossRefGoogle Scholar
  50. 50.
    Tang L, Huang J, Xie L (2010) Finite element modeling and simulation in dry hard orthogonal cutting AISI D2 tool steel with cBN cutting tool. Int J Adv Manuf Technol 53:1167–1181. doi: 10.1007/s00170-010-2901-2 CrossRefGoogle Scholar
  51. 51.
    Fathipour M, Hamedi M, Yousefi R (2013) Numerical and experimental analysis of machining of Al (20 vol% SiC) composite by the use of ABAQUS software. Materwiss Werksttech 44:14–20. doi: 10.1002/mawe.201300959 CrossRefGoogle Scholar
  52. 52.
    Santiuste C, Soldani X, Miguélez MH (2010) Machining FEM model of long fiber composites for aeronautical components. Compos Struct 92:691–698. doi: 10.1016/j.compstruct.2009.09.021 CrossRefGoogle Scholar
  53. 53.
    Manikandan G, Uthayakumar M, Aravindan S (2012) Machining and simulation studies of bimetallic pistons. Int J Adv Manuf Technol 66:711–720. doi: 10.1007/s00170-012-4359-x CrossRefGoogle Scholar
  54. 54.
    Seshadri R, Naveen I, Srinivasan S et al (2013) Finite element simulation of the orthogonal machining process with Al 2024 T351 aerospace alloy. Procedia Eng Int Conf Des Manuf 64:1454–1463. doi: 10.1016/j.proeng.2013.09.227 Google Scholar
  55. 55.
    Kouadri S, Necib K, Atlati S et al (2013) Quantification of the chip segmentation in metal machining: application to machining the aeronautical aluminium alloy AA2024-T351 with cemented carbide tools WC-Co. Int J Mach Tools Manuf 64:102–113. doi: 10.1016/j.ijmachtools.2012.08.006 CrossRefGoogle Scholar
  56. 56.
    Ribeiro Filho SLM, Gomes MO, Lauro CH, Brandão LC (2014) Definition of the temperature and heat flux in micromilling of hardened steel using the finite element method. Arab J Sci Eng 39:7229–7239. doi: 10.1007/s13369-014-1281-6 CrossRefGoogle Scholar
  57. 57.
    Vaz M, Owen DRJ, Kalhori V et al (2007) Modelling and simulation of machining processes. Arch Comput Methods Eng 14:173–204. doi: 10.1007/s11831-007-9005-7 zbMATHCrossRefGoogle Scholar
  58. 58.
    Schulze V, Zanger F, Boev N (2013) Numerical investigations on changes of the main shear plane while broaching. Procedia CIRP 8:246–251. doi: 10.1016/j.procir.2013.06.097 CrossRefGoogle Scholar
  59. 59.
    Saffar RJ, Razfar MR, Zarei O, Ghassemieh E (2008) Simulation of three-dimension cutting force and tool deflection in the end milling operation based on finite element method. Simul Model Pract Theory 16:1677–1688. doi: 10.1016/j.simpat.2008.08.010 CrossRefGoogle Scholar
  60. 60.
    Malakizadi A, Sadik I, Nyborg L (2013) Wear mechanism of cBN inserts during machining of bimetal aluminum-grey cast iron engine block. In: 14th CIRP conference on modeling of machining operations, vol 8, pp 188–193. doi: 10.1016/j.procir.2013.06.087
  61. 61.
    Pu Z, Umbrello D, Dillon OW et al (2014) Finite element modeling of microstructural changes in dry and cryogenic machining of AZ31B magnesium alloy. J Manuf Process 16:335–343. doi: 10.1016/j.jmapro.2014.02.002 CrossRefGoogle Scholar
  62. 62.
    Arrazola PJ, Özel T (2010) Investigations on the effects of friction modeling in finite element simulation of machining. Int J Mech Sci 52:31–42. doi: 10.1016/j.ijmecsci.2009.10.001 CrossRefGoogle Scholar
  63. 63.
    Özel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46:518–530. doi: 10.1016/j.ijmachtools.2005.07.001 CrossRefGoogle Scholar
  64. 64.
    Haddag B, Atlati S, Nouari M, Znasni M (2010) Finite element formulation effect in three-dimensional modeling of a chip formation during machining. Int J Mater Form 3:527–530. doi: 10.1007/s12289-010-0823-z CrossRefGoogle Scholar
  65. 65.
    Ulutan D, Özel T (2013) Determination of tool friction in presence of flank wear and stress distribution based validation using finite element simulations in machining of titanium and nickel based alloys. J Mater Process Technol 213:2217–2237. doi: 10.1016/j.jmatprotec.2013.05.019 CrossRefGoogle Scholar
  66. 66.
    Özel T, Altan T (2000) Determination of workpiece flow stress and friction at the chip–tool contact for high-speed cutting. Int J Mach Tools Manuf 40:133–152. doi: 10.1016/S0890-6955(99)00051-6 CrossRefGoogle Scholar
  67. 67.
    Özel T (2009) Computational modelling of 3D turning: influence of edge micro-geometry on forces, stresses, friction and tool wear in PcBN tooling. J Mater Process Technol 209:5167–5177. doi: 10.1016/j.jmatprotec.2009.03.002 CrossRefGoogle Scholar
  68. 68.
    Rotella G, Dillon OW, Umbrello D et al (2013) Finite element modeling of microstructural changes in turning of AA7075-T651 alloy. J Manuf Process 15:87–95. doi: 10.1016/j.jmapro.2012.09.005 CrossRefGoogle Scholar
  69. 69.
    Klinkova O, Rech J, Drapier S, Bergheau J-M (2011) Characterization of friction properties at the workmaterial/cutting tool interface during the machining of randomly structured carbon fibers reinforced polymer with carbide tools under dry conditions. Tribol Int 44:2050–2058. doi: 10.1016/j.triboint.2011.09.006 CrossRefGoogle Scholar
  70. 70.
    Mahdi M, Zhang L (2001) A finite element model for the orthogonal cutting of fiber-reinforced composite materials. J Mater Process Technol 113:373–377. doi: 10.1016/S0924-0136(01)00675-6 CrossRefGoogle Scholar
  71. 71.
    Phadnis VA, Roy A, Silberschmidt VV (2013) A finite element model of ultrasonically assisted drilling in carbon/epoxy composites. Procedia CIRP 8:141–146. doi: 10.1016/j.procir.2013.06.079 CrossRefGoogle Scholar
  72. 72.
    Phadnis VA, Roy A, Silberschmidt VV (2012) Finite element analysis of drilling in carbon fiber reinforced polymer composites. J Phys: Conf Ser 382:012014. doi: 10.1088/1742-6596/382/1/012014 Google Scholar
  73. 73.
    Pramanik A, Zhang LC, Arsecularatne JA (2007) An FEM investigation into the behavior of metal matrix composites: Tool–particle interaction during orthogonal cutting. Int J Mach Tools Manuf 47:1497–1506. doi: 10.1016/j.ijmachtools.2006.12.004 CrossRefGoogle Scholar
  74. 74.
    Childs THC (2013) Ductile shear failure damage modelling and predicting built-up edge in steel machining. J Mater Process Technol 213:1954–1969. doi: 10.1016/j.jmatprotec.2013.05.017 CrossRefGoogle Scholar
  75. 75.
    Weinert K, Schneider M (2000) Simulation of tool-grinding with finite element method. CIRP Ann Manuf Technol 49:253–256. doi: 10.1016/S0007-8506(07)62940-0 CrossRefGoogle Scholar
  76. 76.
    Duan C, Kong W, Hao Q, Zhou F (2013) Modeling of white layer thickness in high speed machining of hardened steel based on phase transformation mechanism. Int J Adv Manuf Technol 69:59–70. doi: 10.1007/s00170-013-5005-y CrossRefGoogle Scholar
  77. 77.
    Attanasio A, Umbrello D, Cappellini C et al (2012) Tool wear effects on white and dark layer formation in hard turning of AISI 52100 steel. Wear 286–287:98–107. doi: 10.1016/j.wear.2011.07.001 CrossRefGoogle Scholar
  78. 78.
    Ramesh A, Melkote SN (2008) Modeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel. Int J Mach Tools Manuf 48:402–414. doi: 10.1016/j.ijmachtools.2007.09.007 CrossRefGoogle Scholar
  79. 79.
    Ee KC, Dillon OW, Jawahir IS (2005) Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius. Int J Mech Sci 47:1611–1628. doi: 10.1016/j.ijmecsci.2005.06.001 zbMATHCrossRefGoogle Scholar
  80. 80.
    Valiorgue F, Rech J, Hamdi H et al (2012) 3D modeling of residual stresses induced in finish turning of an AISI304L stainless steel. Int J Mach Tools Manuf 53:77–90. doi: 10.1016/j.ijmachtools.2011.09.011 CrossRefGoogle Scholar
  81. 81.
    Ji X, Zhang X, Liang SY (2013) Predictive modeling of residual stress in minimum quantity lubrication machining. Int J Adv Manuf Technol. doi: 10.1007/s00170-013-5439-2 Google Scholar
  82. 82.
    Engineering Village (2015) Number of published papers about finite element method in machining process.
  83. 83.
    Mackerle J (1999) Finite-element analysis and simulation of machining: a bibliography (1976–1996). J Mater Process Technol 86:17–44. doi: 10.1016/S0924-0136(98)00227-1 CrossRefGoogle Scholar
  84. 84.
    Woon KS, Rahman M, Fang FZ et al (2008) Investigations of tool edge radius effect in micromachining: a FEM simulation approach. J Mater Process Technol 195:204–211. doi: 10.1016/j.jmatprotec.2007.04.137 CrossRefGoogle Scholar
  85. 85.
    Ding H, Shen N, Shin YC (2012) Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys. J Mater Process Technol 212:601–613. doi: 10.1016/j.jmatprotec.2011.07.016 CrossRefGoogle Scholar
  86. 86.
    Wang J, Gong Y, Abba G et al (2009) Chip formation analysis in micromilling operation. Int J Adv Manuf Technol 45:430–447. doi: 10.1007/s00170-009-1989-8 CrossRefGoogle Scholar
  87. 87.
    Chen G, Ren C, Zhang P et al (2013) Measurement and finite element simulation of micro-cutting temperatures of tool tip and workpiece. Int J Mach Tools Manuf 75:16–26. doi: 10.1016/j.ijmachtools.2013.08.005 CrossRefGoogle Scholar
  88. 88.
    Özel T, Thepsonthi T, Ulutan D, Kaftanoğlu B (2011) Experiments and finite element simulations on micro-milling of Ti–6Al–4 V alloy with uncoated and cBN coated micro-tools. CIRP Ann Manuf Technol 60:85–88. doi: 10.1016/j.cirp.2011.03.087 CrossRefGoogle Scholar
  89. 89.
    Huang W-J, Hu H-J (2014) Micro-turning of hard steel by single-grain ceramic cutter based on numerical simulations. Ceram Int. doi: 10.1016/j.ceramint.2014.05.002 Google Scholar
  90. 90.
    Maranhão C, da Silva LR, Davim JP (2013) Comportamento termo mecânico no micro-torneamento ortogonal do aço AISI 1045 (Ck45 - DIN): Simulação via elementos finitos e validação experimental. Ciência Tecnol dos Mater 25:57–66. doi: 10.1016/j.ctmat.2013.12.006 CrossRefGoogle Scholar
  91. 91.
    Klocke F, Gerschwiler K, Abouridouane M (2009) Size effects of micro drilling in steel. Prod Eng 3:69–72. doi: 10.1007/s11740-008-0144-y CrossRefGoogle Scholar
  92. 92.
    Abouridouane M, Klocke F, Lung D, Adams O (2012) Size effects in micro drilling ferritic-pearlitic carbon steels. 45th CIRP Conf. Manuf Syst 3:91–96. doi: 10.1016/j.procir.2012.07.017 Google Scholar
  93. 93.
    Bajpai V, Singh RK (2014) Finite element modeling of orthogonal micromachining of anisotropic pyrolytic carbon via damaged plasticity. Precis Eng 38:300–310. doi: 10.1016/j.precisioneng.2013.10.004 CrossRefGoogle Scholar
  94. 94.
    Zahedi SA, Roy A, Silberschmidt VV (2013) Modeling of micro-machining single-crystal f.c.c. metals. Procedia CIRP 8:346–350. doi: 10.1016/j.procir.2013.06.114 CrossRefGoogle Scholar
  95. 95.
    Zahedi SA, Demiral M, Roy A, Silberschmidt VV (2013) FE/SPH modelling of orthogonal micro-machining of f.c.c. single crystal. Comput Mater Sci 78:104–109. doi: 10.1016/j.commatsci.2013.05.022 CrossRefGoogle Scholar
  96. 96.
    Afazov SM, Ratchev SM, Segal J (2011) Prediction and experimental validation of micro-milling cutting forces of AISI H13 steel at hardness between 35 and 60 HRC. Int J Adv Manuf Technol 62:887–899. doi: 10.1007/s00170-011-3864-7 CrossRefGoogle Scholar
  97. 97.
    Moriwaki T, Sugimura N, Luan S (1993) Combined stress, material flow and heat analysis of orthogonal micromachining of copper. CIRP Ann Manuf Technol 42:75–78. doi: 10.1016/S0007-8506(07)62395-6 CrossRefGoogle Scholar
  98. 98.
    Ashtakhov VP (2002) Metal cutting theory—missed chances or a science without history: Part 2. In: Pers. Vis. Viktor P. Astakhov. Accessed 1 Jan 2015

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carlos H. Lauro
    • 1
    Email author
  • Lincoln C. Brandão
    • 2
  • Sergio L. M. Ribeiro Filho
    • 2
  • Robertt A. F. Valente
    • 1
  • J. Paulo Davim
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal
  2. 2.Department of Mechanical EngineeringFederal University of São João del-ReiSão João del-ReiBrazil

Personalised recommendations