Abstract
Phototactic response in the green algae Chlamydomonas reinhardtii is mediated through two rhodopsin proteins, channelrhodopsin-1 (ChR1) and channelrhodopsin-2 (ChR2). Similar to other microbial-type rhodopsins, ChRs have a seven transmembrane motif with a retinal moiety bound to a highly conserved lysine residue that activates the protein upon illumination with blue light. While most bacterial and algal homologues function as an ion pump, ChR2 is an inwardly rectified non-selective cation channel. Although ChR2 shares structural similarity to the proton pump bacteriorhodopsin (bR), ChR2 and bR have distinct functionality. The molecular determinants which define the differing protein functionalities can be elucidated through structure/function experiments. Moreover, the unique properties of ChR2 have paved the way for the emerging field of optogenetics. Cell-specific expression of ChR2 in vivo can invoke action potentials upon light activation and trigger downstream behavioral responses. However, the wild type properties of ChR2 limit the utility of this protein in biomedical applications. Therefore, understanding the underlying structural changes and mechanism of ion translocation for ChRs will be crucial for targeted engineering of ChR mutants with favorable optogenetic properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427(6977):803–807. doi:10.1038/nature02314
Adamantidis A, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424
Adamian L, Jackups R, Binkowski TA, Liang J (2003) Higher-order interhelical spatial interactions in membrane proteins. J Mol Biol 327(1):251–272. doi:10.1016/s0022-2836(03)00041-x
Ambrosi CM, Klimas A, Yu J, Entcheva E (2014) Cardiac applications of optogenetics. Prog Biophys Mol Biol 115(2–3):294–304. doi:10.1016/j.pbiomolbio.2014.07.001
Bamann C, Kirsch T, Nagel G, Bamberg E (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375(3):686–694. doi:10.1016/j.jmb.2007.10.072
Bamann C, Gueta R, Kleinlogel S, Nagel G, Bamberg E (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49(2):267–278. doi:10.1021/bi901634p
Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12(2):229–234. doi:10.1038/nn.2247
Berndt A, Prigge M, Gradmann D, Hegemann P (2010) Two open states with progressive proton selectivities in the branched channelrhodopsin-2 photocycle. Biophys J 98(5):753–761. doi:10.1016/j.bpj.2009.10.052
Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, Pan ZH (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically-targeted optical control of neural activity. Nat Neurosci 8:1263–1268
Cohen J, Schulten K (2004) Mechanism of anionic conduction across ClC. Biophys J 86(2):836–845. doi:10.1016/s0006-3495(04)74159-4
Colegrave N (2002) Sex releases the speed limit on evolution. Nature 420(6916):664–666. doi:10.1038/nature01191
Dawson JP, Weinger JS, Engelman DM (2002) Motifs of serine and threonine can drive association of transmembrane helices. J Mol Biol 316(3):799–805. doi:10.1006/jmbi.2001.5353
Dawydow A, Gueta R, Ljaschenko D, Ullrich S, Hermann M, Ehmann N, Gao S, Fiala A, Langenhan T, Nagel G, Kittel RJ (2014) Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Proc Natl Acad Sci U S A 111(38):13972–13977. doi:10.1073/pnas.1408269111
Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G (2013) A Chlamydomonas-derived human papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One 8(4):e61473. doi:10.1371/journal.pone.0061473
Eisenhauer K, Kuhne J, Ritter E, Berndt A, Wolf S, Freier E, Bartl F, Hegemann P, Gerwert K (2012) In channelrhodopsin-2 Glu-90 is crucial for ion selectivity and is deprotonated during the photocycle. J Biol Chem 287(9):6904–6911. doi:10.1074/jbc.M111.327700
Ernst OP, Sanchez Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P (2008) Photoactivation of channelrhodopsin. J Biol Chem 283(3):1637–1643. doi:10.1074/jbc.M708039200
Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A 106(30):12317–12322. doi:10.1073/pnas.0905852106
Feng L, Campbell EB, MacKinnon R (2012) Molecular mechanism of proton transport in CLC Cl-/H+ exchange transporters. Proc Natl Acad Sci U S A 109(29):11699–11704. doi:10.1073/pnas.1205764109
Fleming KG, Ackerman AL, Engelman DM (1997) The effect of point mutations on the free energy of transmembrane alpha-helix dimerization. J Mol Biol 272(2):266–275. doi:10.1006/jmbi.1997.1236
Foster KW, Smyth RD (1980) Light antennas in phototactic algae. Microbiol Rev 44(4):572–630
Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol 10(5):344–352. doi:10.1038/nrm2668
Gaiko O, Dempski RE (2013) Transmembrane domain three contributes to the ion conductance pathway of channelrhodopsin-2. Biophys J 104(6):1230–1237. doi:10.1016/j.bpj.2013.02.013
Govorunova EG, Sineshchekov OA, Li H, Janz R, Spudich JL (2013) Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J Biol Chem 288(41):29911–29922. doi:10.1074/jbc.M113.505495
Gradmann D, Berndt A, Schneider F, Hegemann P (2011) Rectification of the channelrhodopsin early conductance. Biophys J 101(5):1057–1068. doi:10.1016/j.bpj.2011.07.040
Gray TM, Matthews BW (1984) Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins. J Mol Biol 175(1):75–81. doi:10.1016/0022-2836(84)90446-7
Grossman N, Nikolic K, Toumazou C, Degenaar P (2011) Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Trans Biomed Eng 58(6):1742–1751. doi:10.1109/tbme.2011.2114883
Grzesiek S, Dencher NA (1986) Time-course and stoichiometry of light-induced proton release and uptake during the photocycle of bacteriorhodopsin. FEBS Lett 208(2):337–342. doi:10.1016/0014-5793(86)81045-6
Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P (2010) Ultrafast optogenetic control. Nat Neurosci 13(3):387–392
Heberle J, Oesterhelt D, Dencher NA (1993) Decoupling of photo- and proton cycle in the Asp85- Glu mutant of bacteriorhodopsin. EMBO J 12(10):3721–3727
Hegemann P, Ehlenbeck S, Gradmann D (2005) Multiple photocycles of channelrhodopsin. Biophys J 89(6):3911–3918. doi:10.1529/biophysj.105.069716
Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland, 3rd Edition
Hirai T, Subramaniam S (2009) Protein conformational changes in the bacteriorhodopsin photocycle: comparison of findings from electron and X-Ray crystallographic analyses. PLoS One 4(6):16. doi:10.1371/journal.pone.0005769
Hou S-Y, Govorunova EG, Ntefidou M, Lane CE, Spudich EN, Sineshchekov OA, Spudich JL (2012) Diversity of Chlamydomonas channelrhodopsins. Photochem Photobiol 88(1):119–128. doi:10.1111/j.1751-1097.2011.01027.x
Huber D, Petreanu L, Ghitani N, Ranade S, Hromadka T, Mainen Z, Svoboda K (2008) Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451(7174):61–64. doi:10.1038/nature06445
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14(1):33–38
Ihara K, Umemura T, Katagiri I, Kitajima-Ihara T, Sugiyama Y, Kimura Y, Mukohata Y (1999) Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J Mol Biol 285(1):163–174
Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94
Jayasinghe S, Hristova K, White SH (2001) Energetics, stability, and prediction of transmembrane helices. J Mol Biol 312(5):927–934. doi:10.1006/jmbi.2001.5008
Karathanos TV, Boyle PM, Trayanova NA (2014) Optogenetics-enabled dynamic modulation of action potential duration in atrial tissue: feasibility of a novel therapeutic approach. Europace 16(Suppl 4):iv69–iv76. doi:10.1093/europace/euu250
Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482(7385):369–374. doi:10.1038/nature10870
Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK-S, Boyden ES (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338–346. doi:10.1038/nmeth.2836
Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C, Bamberg E (2011) Ultra light-sensitive and fast neuronal activation with the Ca(2)+−permeable channelrhodopsin CatCh. Nat Neurosci 14(4):513–518. doi:10.1038/nn.2776
Kuhne J, Eisenhauer K, Ritter E, Hegemann P, Gerwert K, Bartl F (2014) Early formation of the ion-conducting pore in channelrhodopsin-2. Angew Chem Int Ed Engl 54(16):4953–4957. doi:10.1002/anie.201410180
Lasogga L, Rettig W, Otto H, Wallat I, Bricks J (2010) Model systems for the investigation of the opsin shift in bacteriorhodopsin. J Phys Chem A 114(5):2179–2188. doi:10.1021/jp904132f
Lenci F, Colombetti G (1978) Photobehavior of microorganisms: a biophysical approach. Annu Rev Biophys Bioeng 7:341–361. doi:10.1146/annurev.bb.07.060178.002013
Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102(49):17816–17821
Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrodopsin variants with improved properties and kinetics. Biophys J 96(5):1803–1814
Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16(10):1499–1508. doi:10.1038/nn.3502
Lisal J, Maduke M (2008) The ClC-0 chloride channel is a ‘broken’ Cl(−)/H(+) antiporter. Nat Struct Mol Biol 15(8):805–810. doi:10.1038/nsmb.1466
Lórenz-FonfrÃa VA, Heberle J (2014) Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel. Biochim Biophys Acta 1837(5):626–642
Lórenz-FonfrÃa VA, Resler T, Krause N, Nack M, Gossing M, Fischer von Mollard G, Bamann C, Bamberg E, Schlesinger R, Heberle J (2013) Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc Natl Acad Sci U S A 110(14):E1273–E1281. doi:10.1073/pnas.1219502110
Luecke H, Richter HT, Lanyi JK (1998) Proton transfer pathways in bacteriorhodopsin at 2.3 Angstrom resolution. Science 280(5371):1934–1937. doi:10.1126/science.280.5371.1934
Marti T, Otto H, Mogi T, Rösselet SJ, Heyn MP, Khorana HG (1991) Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation. J Biol Chem 266(11):6919–6927
Mueller M, Bamann C, Bamberg E, Kuehlbrandt W (2011) Projection structure of channelrhodopsin-2 at 6 angstrom resolution by electron crystallography. J Mol Biol 414(1):86–95. doi:10.1016/j.jmb.2011.09.049
Nack M, Radu I, Gossing M, Bamann C, Bamberg E, von Mollard GF, Heberle J (2010) The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156. Photochem Photobiol Sci 9(2):194–198. doi:10.1039/b9pp00157c
Nack M, Radu I, Schultz B-J, Resler T, Schlesinger R, Bondar A-N, del Val C, Abbruzzetti S, Viappiani C, Bamann C, Bamberg E, Heberle J (2012) Kinetics of proton release and uptake by channelrhodopsin-2. FEBS Lett 586(9):1344–1348. doi:10.1605/01.301-0019506574.2012
Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296(5577):2395–2398
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945. doi:10.1073/pnas.1936192100
Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(21):2279–2284
Nikolic K, Grossman N, Grubb MS, Burrone J, Toumazou C, Degenaar P (2009) Photocycles of Channelrhodopsin-2. Photochem Photobiol 85(1):400–411. doi:10.1111/j.1751-1097.2008.00460.x
Park SA, Lee SR, Tung L, Yue DT (2014) Optical mapping of optogenetically shaped cardiac action potentials. Sci Rep 4:6125. doi:10.1038/srep06125
Peralvarez-Marin A, Marquez M, Bourdelande JL, Querol E, Padros E (2004) Thr-90 plays a vital role in the structure and function of bacteriorhodopsin. J Biol Chem 279(16):16403–16409. doi:10.1074/jbc.M313988200
Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long range callosal projections. Nat Neurosci 10(5):663–668
Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29(17):4031–4037. doi:10.1021/bi00469a001
Prigge M, Schneider F, Tsunoda SP, Shilyansky C, Wietek J, Deisseroth K, Hegemann P (2012) Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 287(38):31804–31812. doi:10.1074/jbc.M112.391185
Radu I, Bamann C, Nack M, Nagel G, Bamberg E, Heberle J (2009) Conformational changes of channelrhodopsin-2. J Am Chem Soc 131(21):7313–7319. doi:10.1021/ja8084274
Richards R, Dempski RE (2012) Re-introduction of transmembrane serine residues reduce the minimum pore diameter of channelrhodopsin-2. PLoS One 7(11), e50018. doi:10.1371/journal.pone.0050018
Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ (2008) Monitoring light-induced structural changes of channelrhodopsin-2 by UV-visible and fourier transform infrared spectroscopy. J Biol Chem 283(50):35033–35041. doi:10.1074/jbc.M806353200
Ruffert K, Himmel B, Lall D, Bamann C, Bamberg E, Betz H, Eulenburg V (2011) Glutamate residue 90 in the predicted transmembrane domain 2 is crucial for cation flux through channelrhodopsin 2. Biochem Biophys Res Commun 410(4):737–743. doi:10.1016/j.bbrc.2011.06.024
Sattig T, Rickert C, Bamberg E, Steinhoff HJ, Bamann C (2013) Light-induced movement of the transmembrane Helix B in channelrhodopsin-2. Angew Chem Int Ed 52(37):9705–9708. doi:10.1002/anie.201301698
Schneider F, Gradmann D, Hegemann P (2013) Ion selectivity and competition in channelrhodopsins. Biophys J 105(1):91–100. doi:10.1016/j.bpj.2013.05.042
Scholz F, Bamberg E, Bamann C, Wachtveitl J (2012) Tuning the primary reaction of channelrhodopsin-2 by imidazole, pH, and site-specific mutations. Biophys J 102(11):2649–2657. doi:10.1016/j.bpj.2012.04.034
Schroll C, Riemensperger T, Bucher D, Ehmer J, Voller T, Erguth K, Gerber B, Hendel T, Nagel G, Buchner E, Fiala A (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or adversive learning in drosophila larvae. Curr Biol 16(17):1741–1747
Sineshchekov OA, Govorunova EG, Wang J, Li H, Spudich JL (2013) Intramolecular proton transfer in channelrhodopsins. Biophys J 104(4):807–817. doi:10.1016/j.bpj.2013.01.002
Stefanescu RA, Shivakeshavan RG, Khargonekar PP, Talathi SS (2013) Computational modeling of channelrhodopsin-2 photocurrent characteristics in relation to neural signaling. Bull Math Biol 75(11):2208–2240. doi:10.1007/s11538-013-9888-4
Stehfest K, Ritter E, Berndt A, Bartl F, Hegemann P (2010) The branched photocycle of the slow-cycling channelrhodopsin-2 mutant C128T. J Mol Biol 398(5):690–702. doi:10.1016/j.jmb.2010.03.031
Treviranus LC (1817) Vermischte Schriften anatomischen und physiologischen Inhalts, vol 2, Fernere Beobachtungen uber die Bewegung der grunen Materie im Pflanzenreiche. J.G. Heyse, Bremen
Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2(1–2):26–40. doi:10.1038/sj.neo.7900082
Verhoefen M-K, Bamann C, Blöcher R, Förster U, Bamberg E, Wachtveitl J (2010) The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps. Chemphyschem 11(14):3113–3122. doi:10.1002/cphc.201000181
Watanabe HC, Welke K, Schneider F, Tsunoda S, Zhang F, Deisseroth K, Hegemann P, Elstner M (2012) Structural model of channelrhodopsin. J Biol Chem 287(10):7456–7466. doi:10.1074/jbc.M111.320309
Watanabe HC, Welke K, Sindhikara DJ, Hegemann P, Elstner M (2013) Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism. J Mol Biol 425(10):1795–1814. doi:10.1016/j.jmb.2013.01.033
Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344(6182):409–412. doi:10.1126/science.1249375
Williams JC, Xu J, Lu Z, Klimas A, Chen X, Ambrosi CM, Cohen IS, Entcheva E (2013) Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model. PLoS Comput Biol 9(9), e1003220. doi:10.1371/journal.pcbi.1003220
Zhang YP, Oertner TG (2007) Optical induction of synaptic plasticity using a light-sensitive channel. Nat Methods 4(2):139–141. doi:10.1038/nmeth988
Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11(6):631–633
Acknowledgements
The Dempski laboratory gratefully acknowledges the WPI Research Foundation for support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Richards, R., Dempski, R.E. (2015). From Phototaxis to Biomedical Applications: Investigating the Molecular Mechanism of Channelrhodopsins. In: Delcour, A.H. (eds) Electrophysiology of Unconventional Channels and Pores. Springer Series in Biophysics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-20149-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-20149-8_15
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20148-1
Online ISBN: 978-3-319-20149-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)