Skip to main content

From Phototaxis to Biomedical Applications: Investigating the Molecular Mechanism of Channelrhodopsins

  • Chapter
Electrophysiology of Unconventional Channels and Pores

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 18))

  • 913 Accesses

Abstract

Phototactic response in the green algae Chlamydomonas reinhardtii is mediated through two rhodopsin proteins, channelrhodopsin-1 (ChR1) and channelrhodopsin-2 (ChR2). Similar to other microbial-type rhodopsins, ChRs have a seven transmembrane motif with a retinal moiety bound to a highly conserved lysine residue that activates the protein upon illumination with blue light. While most bacterial and algal homologues function as an ion pump, ChR2 is an inwardly rectified non-selective cation channel. Although ChR2 shares structural similarity to the proton pump bacteriorhodopsin (bR), ChR2 and bR have distinct functionality. The molecular determinants which define the differing protein functionalities can be elucidated through structure/function experiments. Moreover, the unique properties of ChR2 have paved the way for the emerging field of optogenetics. Cell-specific expression of ChR2 in vivo can invoke action potentials upon light activation and trigger downstream behavioral responses. However, the wild type properties of ChR2 limit the utility of this protein in biomedical applications. Therefore, understanding the underlying structural changes and mechanism of ion translocation for ChRs will be crucial for targeted engineering of ChR mutants with favorable optogenetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Accardi A, Miller C (2004) Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427(6977):803–807. doi:10.1038/nature02314

    Article  CAS  PubMed  Google Scholar 

  • Adamantidis A, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    Google Scholar 

  • Adamian L, Jackups R, Binkowski TA, Liang J (2003) Higher-order interhelical spatial interactions in membrane proteins. J Mol Biol 327(1):251–272. doi:10.1016/s0022-2836(03)00041-x

    Article  CAS  PubMed  Google Scholar 

  • Ambrosi CM, Klimas A, Yu J, Entcheva E (2014) Cardiac applications of optogenetics. Prog Biophys Mol Biol 115(2–3):294–304. doi:10.1016/j.pbiomolbio.2014.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamann C, Kirsch T, Nagel G, Bamberg E (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375(3):686–694. doi:10.1016/j.jmb.2007.10.072

    Article  CAS  PubMed  Google Scholar 

  • Bamann C, Gueta R, Kleinlogel S, Nagel G, Bamberg E (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49(2):267–278. doi:10.1021/bi901634p

    Article  CAS  PubMed  Google Scholar 

  • Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12(2):229–234. doi:10.1038/nn.2247

    Article  CAS  PubMed  Google Scholar 

  • Berndt A, Prigge M, Gradmann D, Hegemann P (2010) Two open states with progressive proton selectivities in the branched channelrhodopsin-2 photocycle. Biophys J 98(5):753–761. doi:10.1016/j.bpj.2009.10.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, Pan ZH (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33

    Article  CAS  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically-targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  Google Scholar 

  • Cohen J, Schulten K (2004) Mechanism of anionic conduction across ClC. Biophys J 86(2):836–845. doi:10.1016/s0006-3495(04)74159-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colegrave N (2002) Sex releases the speed limit on evolution. Nature 420(6916):664–666. doi:10.1038/nature01191

    Article  CAS  PubMed  Google Scholar 

  • Dawson JP, Weinger JS, Engelman DM (2002) Motifs of serine and threonine can drive association of transmembrane helices. J Mol Biol 316(3):799–805. doi:10.1006/jmbi.2001.5353

  • Dawydow A, Gueta R, Ljaschenko D, Ullrich S, Hermann M, Ehmann N, Gao S, Fiala A, Langenhan T, Nagel G, Kittel RJ (2014) Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Proc Natl Acad Sci U S A 111(38):13972–13977. doi:10.1073/pnas.1408269111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G (2013) A Chlamydomonas-derived human papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One 8(4):e61473. doi:10.1371/journal.pone.0061473

  • Eisenhauer K, Kuhne J, Ritter E, Berndt A, Wolf S, Freier E, Bartl F, Hegemann P, Gerwert K (2012) In channelrhodopsin-2 Glu-90 is crucial for ion selectivity and is deprotonated during the photocycle. J Biol Chem 287(9):6904–6911. doi:10.1074/jbc.M111.327700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst OP, Sanchez Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P (2008) Photoactivation of channelrhodopsin. J Biol Chem 283(3):1637–1643. doi:10.1074/jbc.M708039200

  • Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A 106(30):12317–12322. doi:10.1073/pnas.0905852106

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng L, Campbell EB, MacKinnon R (2012) Molecular mechanism of proton transport in CLC Cl-/H+ exchange transporters. Proc Natl Acad Sci U S A 109(29):11699–11704. doi:10.1073/pnas.1205764109

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming KG, Ackerman AL, Engelman DM (1997) The effect of point mutations on the free energy of transmembrane alpha-helix dimerization. J Mol Biol 272(2):266–275. doi:10.1006/jmbi.1997.1236

    Article  CAS  PubMed  Google Scholar 

  • Foster KW, Smyth RD (1980) Light antennas in phototactic algae. Microbiol Rev 44(4):572–630

    Article  CAS  Google Scholar 

  • Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol 10(5):344–352. doi:10.1038/nrm2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaiko O, Dempski RE (2013) Transmembrane domain three contributes to the ion conductance pathway of channelrhodopsin-2. Biophys J 104(6):1230–1237. doi:10.1016/j.bpj.2013.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Li H, Janz R, Spudich JL (2013) Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J Biol Chem 288(41):29911–29922. doi:10.1074/jbc.M113.505495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gradmann D, Berndt A, Schneider F, Hegemann P (2011) Rectification of the channelrhodopsin early conductance. Biophys J 101(5):1057–1068. doi:10.1016/j.bpj.2011.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray TM, Matthews BW (1984) Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins. J Mol Biol 175(1):75–81. doi:10.1016/0022-2836(84)90446-7

    Article  CAS  PubMed  Google Scholar 

  • Grossman N, Nikolic K, Toumazou C, Degenaar P (2011) Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Trans Biomed Eng 58(6):1742–1751. doi:10.1109/tbme.2011.2114883

    Article  PubMed  Google Scholar 

  • Grzesiek S, Dencher NA (1986) Time-course and stoichiometry of light-induced proton release and uptake during the photocycle of bacteriorhodopsin. FEBS Lett 208(2):337–342. doi:10.1016/0014-5793(86)81045-6

    Article  CAS  Google Scholar 

  • Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P (2010) Ultrafast optogenetic control. Nat Neurosci 13(3):387–392

    Google Scholar 

  • Heberle J, Oesterhelt D, Dencher NA (1993) Decoupling of photo- and proton cycle in the Asp85- Glu mutant of bacteriorhodopsin. EMBO J 12(10):3721–3727

    Google Scholar 

  • Hegemann P, Ehlenbeck S, Gradmann D (2005) Multiple photocycles of channelrhodopsin. Biophys J 89(6):3911–3918. doi:10.1529/biophysj.105.069716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland, 3rd Edition

    Google Scholar 

  • Hirai T, Subramaniam S (2009) Protein conformational changes in the bacteriorhodopsin photocycle: comparison of findings from electron and X-Ray crystallographic analyses. PLoS One 4(6):16. doi:10.1371/journal.pone.0005769

  • Hou S-Y, Govorunova EG, Ntefidou M, Lane CE, Spudich EN, Sineshchekov OA, Spudich JL (2012) Diversity of Chlamydomonas channelrhodopsins. Photochem Photobiol 88(1):119–128. doi:10.1111/j.1751-1097.2011.01027.x

    Article  CAS  PubMed  Google Scholar 

  • Huber D, Petreanu L, Ghitani N, Ranade S, Hromadka T, Mainen Z, Svoboda K (2008) Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451(7174):61–64. doi:10.1038/nature06445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14(1):33–38

    Article  CAS  Google Scholar 

  • Ihara K, Umemura T, Katagiri I, Kitajima-Ihara T, Sugiyama Y, Kimura Y, Mukohata Y (1999) Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J Mol Biol 285(1):163–174

    Article  CAS  Google Scholar 

  • Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94

    Article  CAS  Google Scholar 

  • Jayasinghe S, Hristova K, White SH (2001) Energetics, stability, and prediction of transmembrane helices. J Mol Biol 312(5):927–934. doi:10.1006/jmbi.2001.5008

    Article  CAS  PubMed  Google Scholar 

  • Karathanos TV, Boyle PM, Trayanova NA (2014) Optogenetics-enabled dynamic modulation of action potential duration in atrial tissue: feasibility of a novel therapeutic approach. Europace 16(Suppl 4):iv69–iv76. doi:10.1093/europace/euu250

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482(7385):369–374. doi:10.1038/nature10870

  • Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK-S, Boyden ES (2014) Independent optical excitation of distinct neural populations. Nat Methods 11(3):338–346. doi:10.1038/nmeth.2836

  • Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C, Bamberg E (2011) Ultra light-sensitive and fast neuronal activation with the Ca(2)+−permeable channelrhodopsin CatCh. Nat Neurosci 14(4):513–518. doi:10.1038/nn.2776

    Article  CAS  PubMed  Google Scholar 

  • Kuhne J, Eisenhauer K, Ritter E, Hegemann P, Gerwert K, Bartl F (2014) Early formation of the ion-conducting pore in channelrhodopsin-2. Angew Chem Int Ed Engl 54(16):4953–4957. doi:10.1002/anie.201410180

  • Lasogga L, Rettig W, Otto H, Wallat I, Bricks J (2010) Model systems for the investigation of the opsin shift in bacteriorhodopsin. J Phys Chem A 114(5):2179–2188. doi:10.1021/jp904132f

    Article  CAS  PubMed  Google Scholar 

  • Lenci F, Colombetti G (1978) Photobehavior of microorganisms: a biophysical approach. Annu Rev Biophys Bioeng 7:341–361. doi:10.1146/annurev.bb.07.060178.002013

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102(49):17816–17821

    Article  CAS  Google Scholar 

  • Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrodopsin variants with improved properties and kinetics. Biophys J 96(5):1803–1814

    Google Scholar 

  • Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16(10):1499–1508. doi:10.1038/nn.3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisal J, Maduke M (2008) The ClC-0 chloride channel is a ‘broken’ Cl(−)/H(+) antiporter. Nat Struct Mol Biol 15(8):805–810. doi:10.1038/nsmb.1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lórenz-Fonfría VA, Heberle J (2014) Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel. Biochim Biophys Acta 1837(5):626–642

    Google Scholar 

  • Lórenz-Fonfría VA, Resler T, Krause N, Nack M, Gossing M, Fischer von Mollard G, Bamann C, Bamberg E, Schlesinger R, Heberle J (2013) Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc Natl Acad Sci U S A 110(14):E1273–E1281. doi:10.1073/pnas.1219502110

  • Luecke H, Richter HT, Lanyi JK (1998) Proton transfer pathways in bacteriorhodopsin at 2.3 Angstrom resolution. Science 280(5371):1934–1937. doi:10.1126/science.280.5371.1934

    Article  CAS  PubMed  Google Scholar 

  • Marti T, Otto H, Mogi T, Rösselet SJ, Heyn MP, Khorana HG (1991) Bacteriorhodopsin mutants containing single substitutions of serine or threonine residues are all active in proton translocation. J Biol Chem 266(11):6919–6927

    CAS  PubMed  Google Scholar 

  • Mueller M, Bamann C, Bamberg E, Kuehlbrandt W (2011) Projection structure of channelrhodopsin-2 at 6 angstrom resolution by electron crystallography. J Mol Biol 414(1):86–95. doi:10.1016/j.jmb.2011.09.049

  • Nack M, Radu I, Gossing M, Bamann C, Bamberg E, von Mollard GF, Heberle J (2010) The DC gate in Channelrhodopsin-2: crucial hydrogen bonding interaction between C128 and D156. Photochem Photobiol Sci 9(2):194–198. doi:10.1039/b9pp00157c

    Article  CAS  PubMed  Google Scholar 

  • Nack M, Radu I, Schultz B-J, Resler T, Schlesinger R, Bondar A-N, del Val C, Abbruzzetti S, Viappiani C, Bamann C, Bamberg E, Heberle J (2012) Kinetics of proton release and uptake by channelrhodopsin-2. FEBS Lett 586(9):1344–1348. doi:10.1605/01.301-0019506574.2012

  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296(5577):2395–2398

    Article  CAS  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945. doi:10.1073/pnas.1936192100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(21):2279–2284

    Google Scholar 

  • Nikolic K, Grossman N, Grubb MS, Burrone J, Toumazou C, Degenaar P (2009) Photocycles of Channelrhodopsin-2. Photochem Photobiol 85(1):400–411. doi:10.1111/j.1751-1097.2008.00460.x

    Article  CAS  PubMed  Google Scholar 

  • Park SA, Lee SR, Tung L, Yue DT (2014) Optical mapping of optogenetically shaped cardiac action potentials. Sci Rep 4:6125. doi:10.1038/srep06125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peralvarez-Marin A, Marquez M, Bourdelande JL, Querol E, Padros E (2004) Thr-90 plays a vital role in the structure and function of bacteriorhodopsin. J Biol Chem 279(16):16403–16409. doi:10.1074/jbc.M313988200

    Article  CAS  PubMed  Google Scholar 

  • Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long range callosal projections. Nat Neurosci 10(5):663–668

    Article  CAS  Google Scholar 

  • Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29(17):4031–4037. doi:10.1021/bi00469a001

    Article  CAS  PubMed  Google Scholar 

  • Prigge M, Schneider F, Tsunoda SP, Shilyansky C, Wietek J, Deisseroth K, Hegemann P (2012) Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 287(38):31804–31812. doi:10.1074/jbc.M112.391185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radu I, Bamann C, Nack M, Nagel G, Bamberg E, Heberle J (2009) Conformational changes of channelrhodopsin-2. J Am Chem Soc 131(21):7313–7319. doi:10.1021/ja8084274

    Article  CAS  PubMed  Google Scholar 

  • Richards R, Dempski RE (2012) Re-introduction of transmembrane serine residues reduce the minimum pore diameter of channelrhodopsin-2. PLoS One 7(11), e50018. doi:10.1371/journal.pone.0050018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ (2008) Monitoring light-induced structural changes of channelrhodopsin-2 by UV-visible and fourier transform infrared spectroscopy. J Biol Chem 283(50):35033–35041. doi:10.1074/jbc.M806353200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffert K, Himmel B, Lall D, Bamann C, Bamberg E, Betz H, Eulenburg V (2011) Glutamate residue 90 in the predicted transmembrane domain 2 is crucial for cation flux through channelrhodopsin 2. Biochem Biophys Res Commun 410(4):737–743. doi:10.1016/j.bbrc.2011.06.024

    Article  CAS  PubMed  Google Scholar 

  • Sattig T, Rickert C, Bamberg E, Steinhoff HJ, Bamann C (2013) Light-induced movement of the transmembrane Helix B in channelrhodopsin-2. Angew Chem Int Ed 52(37):9705–9708. doi:10.1002/anie.201301698

  • Schneider F, Gradmann D, Hegemann P (2013) Ion selectivity and competition in channelrhodopsins. Biophys J 105(1):91–100. doi:10.1016/j.bpj.2013.05.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz F, Bamberg E, Bamann C, Wachtveitl J (2012) Tuning the primary reaction of channelrhodopsin-2 by imidazole, pH, and site-specific mutations. Biophys J 102(11):2649–2657. doi:10.1016/j.bpj.2012.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroll C, Riemensperger T, Bucher D, Ehmer J, Voller T, Erguth K, Gerber B, Hendel T, Nagel G, Buchner E, Fiala A (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or adversive learning in drosophila larvae. Curr Biol 16(17):1741–1747

    Google Scholar 

  • Sineshchekov OA, Govorunova EG, Wang J, Li H, Spudich JL (2013) Intramolecular proton transfer in channelrhodopsins. Biophys J 104(4):807–817. doi:10.1016/j.bpj.2013.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanescu RA, Shivakeshavan RG, Khargonekar PP, Talathi SS (2013) Computational modeling of channelrhodopsin-2 photocurrent characteristics in relation to neural signaling. Bull Math Biol 75(11):2208–2240. doi:10.1007/s11538-013-9888-4

    Article  CAS  PubMed  Google Scholar 

  • Stehfest K, Ritter E, Berndt A, Bartl F, Hegemann P (2010) The branched photocycle of the slow-cycling channelrhodopsin-2 mutant C128T. J Mol Biol 398(5):690–702. doi:10.1016/j.jmb.2010.03.031

    Article  CAS  PubMed  Google Scholar 

  • Treviranus LC (1817) Vermischte Schriften anatomischen und physiologischen Inhalts, vol 2, Fernere Beobachtungen uber die Bewegung der grunen Materie im Pflanzenreiche. J.G. Heyse, Bremen

    Google Scholar 

  • Tromberg BJ, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia 2(1–2):26–40. doi:10.1038/sj.neo.7900082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhoefen M-K, Bamann C, Blöcher R, Förster U, Bamberg E, Wachtveitl J (2010) The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps. Chemphyschem 11(14):3113–3122. doi:10.1002/cphc.201000181

  • Watanabe HC, Welke K, Schneider F, Tsunoda S, Zhang F, Deisseroth K, Hegemann P, Elstner M (2012) Structural model of channelrhodopsin. J Biol Chem 287(10):7456–7466. doi:10.1074/jbc.M111.320309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe HC, Welke K, Sindhikara DJ, Hegemann P, Elstner M (2013) Towards an understanding of channelrhodopsin function: simulations lead to novel insights of the channel mechanism. J Mol Biol 425(10):1795–1814. doi:10.1016/j.jmb.2013.01.033

    Article  CAS  PubMed  Google Scholar 

  • Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344(6182):409–412. doi:10.1126/science.1249375

  • Williams JC, Xu J, Lu Z, Klimas A, Chen X, Ambrosi CM, Cohen IS, Entcheva E (2013) Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model. PLoS Comput Biol 9(9), e1003220. doi:10.1371/journal.pcbi.1003220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YP, Oertner TG (2007) Optical induction of synaptic plasticity using a light-sensitive channel. Nat Methods 4(2):139–141. doi:10.1038/nmeth988

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11(6):631–633

    Article  Google Scholar 

Download references

Acknowledgements

The Dempski laboratory gratefully acknowledges the WPI Research Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Dempski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Richards, R., Dempski, R.E. (2015). From Phototaxis to Biomedical Applications: Investigating the Molecular Mechanism of Channelrhodopsins. In: Delcour, A.H. (eds) Electrophysiology of Unconventional Channels and Pores. Springer Series in Biophysics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-20149-8_15

Download citation

Publish with us

Policies and ethics