Amyloid Peptide Channels

  • Rustam Azimov
  • Bruce L. Kagan
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 18)


Amyloid peptides and proteins appear to play a pathophysiologic role in amyloid diseases. Many amyloid peptides have been found to form ion channels under physiologic conditions. The channels from various diseases share common properties including heterodispersity, irreversibility, weak ionic selectivity, voltage-independent inhibition by Congo red and blockade by Zn+2. These features would make these channels likely to depolarize target cells and mitochondria, disrupt Ca+2 regulation, and deplete cellular energy stores leading to cell dysfunction and death. The failure of many anti-amyloid drugs in human clinical trials may be related to the membrane location of amyloid channels.


Amyloid Channels Pores Membranes Toxicity 



We thank Ms. Doris Finck for editorial assistance.


  1. Abramov AY, Canevari L, Duchen MR (2004) Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24(2):565–575CrossRefPubMedGoogle Scholar
  2. Anekonda TS, Quinn JF, Harris C, Frahler K, Wadsworth TL, Woltier RL (2010) L-type voltage- Au10 gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer’s disease. Neurobiol Dis 41:62–70. 21PubMedCentralCrossRefPubMedGoogle Scholar
  3. Arispe N, Doh M (2002) Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AbetaP(1–40) and(1–42) peptides. FASEB J 16:1526–1536CrossRefPubMedGoogle Scholar
  4. Arispe N, Rojas E, Pollard HB (1993a) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 90(2):567–571PubMedCentralCrossRefPubMedGoogle Scholar
  5. Arispe N, Pollard HB, Rojas E (1993b) Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1–40)] in bilayer membranes. Proc Natl Acad Sci U S A 90(22):10573–10577PubMedCentralCrossRefPubMedGoogle Scholar
  6. Arispe N, Pollard HB, Rojas E (1994) beta-Amyloid Ca(2+)-channel hypothesis for neuronal death in Alzheimer disease. Mol Cell Biochem 140(2):119–125CrossRefPubMedGoogle Scholar
  7. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431(7010):805–810CrossRefPubMedGoogle Scholar
  8. Azimova RK, Kagan BL (2003) Ion channels formed by a fragment of alpha-synuclein (NAC) in lipid membranes. Biophys J 84(2):53aGoogle Scholar
  9. Bahadi R, Farrelly PV, Kenna BL, Kourie JI, Tagliavini F, Forloni G et al (2003) Channels formed with a mutant prion protein PrP(82–146) homologous to a 7-kDa fragment in diseased brain of GSS patients. Am J Physiol Cell Physiol 285(4):C862–C872CrossRefPubMedGoogle Scholar
  10. Bekris LM, Mata IF, Zabetian CP (2010) The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 23(4):228–242. Epub 2010 Oct 11. 23PubMedCentralCrossRefPubMedGoogle Scholar
  11. Berest V, Rutkowski M, Rolka K, Łegowska A, Debska G, Stepkowski D et al (2003) The prion peptide forms ion channels in planar lipid bilayers. Cell Mol Biol Lett 8(2):353–362PubMedGoogle Scholar
  12. Blaustein RO, Koehler TM, Collier RJ, Finkelstein A (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci U S A 86(7):2209–2213PubMedCentralCrossRefPubMedGoogle Scholar
  13. Camilleri A, Zarb C, Caruana M, Ostermeier U, Ghio S, Högen T, Schmidt F, Giese A, Vassallo N (2013) Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. Biochim Biophys Acta 1828(11):2532–2543CrossRefPubMedGoogle Scholar
  14. Caughey B, Lansbury PT Jr (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298CrossRefPubMedGoogle Scholar
  15. Cobb NJ, Surewicz WK (2009) Prion diseases and their biochemical mechanisms. Biochemistry 48(12):2574–2585PubMedCentralCrossRefPubMedGoogle Scholar
  16. Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA et al (1992) Crystal structures explain functional properties of two E coli porins. Nature 358(6389):727–733CrossRefPubMedGoogle Scholar
  17. Díaz JC, Linnehan J, Pollard H, Arispe N (2006) Histidines 13 and 14 in the Abeta sequence are targets for inhibition of Alzheimer’s disease Abeta ion channel and cytotoxicity. Biol Res 39(3):447–460CrossRefPubMedGoogle Scholar
  18. Diaz JC, Simakova O, Jacobson KA, Arispe N, Pollard HB (2009) Small molecule blockers of the Alzheimer Abeta calcium channel potently protect neurons from Abeta cytotoxicity. Proc Natl Acad Sci U S A 106(9):3348–3353PubMedCentralCrossRefPubMedGoogle Scholar
  19. Durell SR, Guy HR, Arispe N, Rojas E, Pollard HB (1994) Theoretical models of the ion channel structure of amyloid beta-protein. Biophys J 67(6):2137–2145PubMedCentralCrossRefPubMedGoogle Scholar
  20. Farrelly PV, Kenna BL, Laohachai KL, Bahadi R, Salmona M, Forloni G et al (2003) Quinacrine blocks PrP(106–126) formed channels. J Neurosci Res 74(6):934–941CrossRefPubMedGoogle Scholar
  21. Fernandez A, Berry RS (2003) Proteins with H-bond packing defects are highly interactive with lipid bilayers: implications for amyloidogenesis. Proc Natl Acad Sci U S A 100:2391–2396PubMedCentralCrossRefPubMedGoogle Scholar
  22. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O et al (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543–546CrossRefPubMedGoogle Scholar
  23. Fraser SP, Suh YH, Chong YH, Djamgoz MB (1996) Membrane currents induced in Xenopus oocytes by the C-terminal fragment of the amyloid protein (APP). J Neurochem 66(5):2034–2040CrossRefPubMedGoogle Scholar
  24. Fraser SP, Suh YH, Djamgoz MB (1997) Ionic effects of the Alzheimer’s disease beta-amyloid precursor protein and its metabolic fragments. Trends J Neurosci 20:67–72CrossRefGoogle Scholar
  25. Garwood C, Faizullabhoy A, Wharton SB, Ince PG, Heath PR, Shaw PJ, Baxter L, Gelsthorpe C, Forster G, Matthews FE, Brayne C, Simpson JE, MRC Cognitive Function and Ageing Neuropathology Study Group (2013) Calcium dysregulation in relation to Alzheimer-type pathology in the ageing brain. Neuropathol Appl Neurobiol 39(7):788–799CrossRefPubMedGoogle Scholar
  26. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185CrossRefPubMedGoogle Scholar
  27. Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M et al (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279:827–834CrossRefPubMedGoogle Scholar
  28. Hirakura Y, Lin MC, Kagan BL (1999) Alzheimer amyloid abeta1-42 channels: effects of solvent, pH, and Congo red. J Neurosci Res 57:458–466CrossRefPubMedGoogle Scholar
  29. Hirakura Y, Azimov R, Azimova R, Kagan BL (2000) Polyglutamine-induced ion channels: a possible mechanism for the neurotoxicity of Huntington and other CAG repeat diseases. J Neurosci Res 60:490–494CrossRefPubMedGoogle Scholar
  30. Inoue S (2008) In situ Abeta pores in AD brain are cylindrical assembly of Abeta protofilaments. Amyloid 15(4):223–233CrossRefPubMedGoogle Scholar
  31. Jang H, Zheng J, Lal R, Nussinov R (2008) New structures help the modeling of toxic amyloidbeta ion channels. Trends Biochem Sci 33:91–100. 26CrossRefPubMedGoogle Scholar
  32. Jang H, Arce FT, Capone R, Ramachandran S, Lal R, Nussinov R (2009) Misfolded amyloid ion channels present mobile beta-sheet subunits in contrast to conventional ion channels. Biophys J 97(11):3029–3037PubMedCentralCrossRefPubMedGoogle Scholar
  33. Jang H, Teran AF, Ramachandran S, Capone R, Lal R, Nussinov R (2010) Structural convergence among diverse, toxic beta-sheet ion channels. J Phys Chem B 114(29):9445–9451PubMedCentralCrossRefPubMedGoogle Scholar
  34. Jang H, Connelly L, Arce FT, Ramachandran S, Lal R, Kagan BL (2013) R Nussinov Alzheimer’s disease: which type of amyloid-preventing drug agents to employ? Phys Chem Chem Phys 15:8868–8877PubMedCentralCrossRefPubMedGoogle Scholar
  35. Kagan BL (1983) Mode of action of yeast killer toxins: channel formation in lipid bilayer membranes. Nature 302(5910):709–711CrossRefPubMedGoogle Scholar
  36. Kagan BL, Thundimadathil J (2010) Amyloid peptide pores and the beta sheet conformation. Adv Exp Med Biol 677:150–167CrossRefPubMedGoogle Scholar
  37. Kagan BL, Selsted ME, Ganz T, Lehrer RI (1990) Antimicrobial defensin peptides form voltage dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci U S A 87:210–214PubMedCentralCrossRefPubMedGoogle Scholar
  38. Kagan BL, Azimov R, Azimova R (2004) Amyloid peptide channels. J Membr Biol 202(1):1–10CrossRefPubMedGoogle Scholar
  39. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489CrossRefPubMedGoogle Scholar
  40. Kim HS, Lee JH, Lee JP, Kim EM, Chang KA, Park CH et al (2002) Amyloid beta peptide induces cytochrome C release from isolated mitochondria. Neuroreport 13:1989–1993CrossRefPubMedGoogle Scholar
  41. Kim HY, Cho MK, Kumar A, Maier E, Siebenhaar C, Becker S et al (2009) Structural properties of pore-forming oligomers of alpha-synuclein. J Am Chem Soc 131(47):17482–17489CrossRefPubMedGoogle Scholar
  42. Kostka M, Högen T, Danzer KM, Levin J, Habeck M, Wirth A et al (2008) Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283(16):10992–11003CrossRefPubMedGoogle Scholar
  43. Kourie JI, Culverson A (2000) Prion peptide fragment PrP[106–126] forms distinct cation channel types. J Neurosci Res 62:120–133. 22CrossRefPubMedGoogle Scholar
  44. Kourie JI, Kenna BL, Tew D, Jobling MF, Curtain CC, Masters CL et al (2003) Copper modulation of ion channels of PrP[106–126] mutant prion peptide fragments. J Membr Biol 193(1):35–45CrossRefPubMedGoogle Scholar
  45. Krasilnikov OV, Sabirov RZ, Ternovsky VI, Merzliak PG, Tashmukhamedov BA (1988) The structure of Staphylococcus aureus alpha-toxin-induced ionic channel. Gen Physiol Biophys 7(5):467–473PubMedGoogle Scholar
  46. Lazebnik Y (2001) Why do regulators of apoptosis look like bacterial toxins? Curr Biol 11(19):R767–R768CrossRefPubMedGoogle Scholar
  47. Lin MC, Mirzabekov T, Kagan BL (1997) Channel formation by a neurotoxic prion protein fragment. J Biol Chem 272:44–47CrossRefPubMedGoogle Scholar
  48. Lin H, Zhu YJ, Lal R (1999) Amyloid beta protein (1–40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry 38:11189–11196CrossRefPubMedGoogle Scholar
  49. Liu D, Pitta M, Lee JH, Ray B, Lahiri D, Furukawa K et al (2010) The KATP channel activator Au10 diazoxide ameliorates amyloid-b and tau pathologies and improves memory in the 3xTgAD mouse model of Alzheimer’s disease. J Alzheimers Dis 22:443–457PubMedCentralPubMedGoogle Scholar
  50. Mirzabekov T, Lin MC, Yuan WL, Marshall PJ, Carman M, Tomaselli K et al (1994) Channel formation in planar lipid bilayers by a neurotoxic fragment of the beta-amyloid peptide. Biochem Biophys Res Commun 202:1142–1148CrossRefPubMedGoogle Scholar
  51. Ng AW, Wasan KM, Lopez-Berestein G (2003) Development of liposomal polyene antibiotics: an historical perspective. J Pharm Pharm Sci 6(1):67–83PubMedGoogle Scholar
  52. Nikaido H, Rosenberg EY, Foulds J (1983) Porin channels in Escherichia coli: studies with β-lactams in intact cells. J Bacteriol 153:232–240PubMedCentralPubMedGoogle Scholar
  53. Orr AL, Li S, Wang CE, Li H, Wang J, Rong J, Xu X, Mastroberardino PG, Greenamyre JT, Li XJ (2008) N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci 28(11):2783–2792PubMedCentralCrossRefPubMedGoogle Scholar
  54. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D et al (1993) Conversion of alphahelices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90:10962–10966PubMedCentralCrossRefPubMedGoogle Scholar
  55. Panov A, Obertone T, Bennett-Desmelik J, Greenamyre JT (1999) Ca(2+)-dependent permeability transition and complex I activity in lymphoblast mitochondria from normal individuals and patients with Huntington’s or Alzheimer’s disease. Ann N Y Acad Sci 893:365–368CrossRefPubMedGoogle Scholar
  56. Parks JK, Smith TS, Trimmer PA, Bennett JP Jr, Parker WD Jr (2001) Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem 76:1050–1056CrossRefPubMedGoogle Scholar
  57. Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B et al (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102(30):10427–10432PubMedCentralCrossRefPubMedGoogle Scholar
  58. Rhee SK, Quist AP, Lal R (1998) Amyloid beta protein-(1–42) forms calcium-permeable, Zn2+sensitive channel. J Biol Chem 273:13379–13382CrossRefPubMedGoogle Scholar
  59. Schein SJ, Kagan BL, Finkelstein A (1978) Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes. Nature 276:159–163CrossRefPubMedGoogle Scholar
  60. Shepard LA, Shatursky O, Johnson AE, Tweten RK (2000) The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochemistry 39(33):10284–10293CrossRefPubMedGoogle Scholar
  61. Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98CrossRefPubMedGoogle Scholar
  62. Sokolov Y, Mirzabekov T, Martin DW, Lehrer RI, Kagan BL (1999) Membrane channel formation by antimicrobial protegrins. Biochim Biophys Acta 1420(1):23–29. 27CrossRefPubMedGoogle Scholar
  63. Solomon IH, Huettner JE, Harris DA (2010) Neurotoxic mutants of the prion protein induce spontaneous ionic currents in cultured cells. J Biol Chem 285(34):26719–26726PubMedCentralCrossRefPubMedGoogle Scholar
  64. Solomon IH, Biasini E, Harris DA (2012) Ion channels induced by the prion protein: mediators of neurotoxicity. Prion 6(1):40–45PubMedCentralCrossRefPubMedGoogle Scholar
  65. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866CrossRefPubMedGoogle Scholar
  66. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley-Interscience, New York. ISBN 10: 0471048933 ISBN 13: 9780471048930Google Scholar
  67. Thundimadathil J, Roeske RW, Guo L (2006) Effect of membrane mimicking environment on the conformation of a pore-forming (xSxG)6 peptide. Biopolymers 84:317–328CrossRefPubMedGoogle Scholar
  68. Volles MJ, Lansbury PT Jr (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41(14):4595–4602CrossRefPubMedGoogle Scholar
  69. Wu N, Joshi PR, Cepeda C, Masliah E, Levine MS (2010) Alpha-synuclein overexpression in mice alters synaptic communication in the corticostriatal pathway. J Neurosci Res 88(8):1764–1776PubMedCentralPubMedGoogle Scholar
  70. Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245(4916):417–420CrossRefPubMedGoogle Scholar
  71. Zakharov SD, Hulleman JD, Dutseva EA, Antonenko YN, Rochet JC, Cramer WA (2007) Helical alpha-synuclein forms highly conductive ion channels. Biochemistry 46:14369–14379CrossRefPubMedGoogle Scholar
  72. Zhu YJ, Lin H, Lal R (2000) Fresh and nonfibrillar amyloid beta protein(1–40) induces rapid cellular degeneration in aged human fibroblasts: evidence for AbetaP-channel-mediated cellular toxicity. FASEB J 14(9):1244–1254PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Psychiatry and Biobehavioral SciencesSemel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations