Skip to main content

Properties of Pores Formed by Cholesterol-Dependent Cytolysins and Actinoporins

  • Chapter
Electrophysiology of Unconventional Channels and Pores

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 18))

  • 934 Accesses

Abstract

Planar lipid membrane (PLM) measurements allow direct observation of pores in model lipid membranes. This biophysical approach was very important for our understanding of how transmembrane pores are formed by cholesterol-dependent cytolysins (CDCs), a toxin family from pathogenic bacteria, and actinoporins, cytolysins from sea anemones. In this review we discuss current knowledge of pore formation by these two protein families and how the PLM approach revealed mechanisms by which these two unrelated protein families porate membranes. Interestingly, for both toxins, the protein portion constituting the pore walls has an alpha helical configuration in the secreted water soluble form. This structure is maintained for actinoporins in the membrane inserted configuration, while the pore of CDCs necessitates a drastic change in secondary structure, which transforms to beta hairpins in the membrane. Both proteins are able to form toroidal proteo-lipid pores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alegre-Cebollada J, Onaderra M, Gavilanes JG, del Pozo AM (2007) Sea anemone actinoporins: the transition from a folded soluble state to a functionally active membrane-bound oligomeric pore. Curr Protein Pept Sci 8(6):558–572

    CAS  PubMed  Google Scholar 

  • Alvarez C, Mancheno JM, Martinez D, Tejuca M, Pazos F, Lanio ME (2009) Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: their interaction with membranes. Toxicon 54(8):1135–1147

    CAS  PubMed  Google Scholar 

  • Anderluh G, Barlič A, Potrich C, Maček P, Menestrina G (2000) Lysine 77 is a key residue in aggregation of equinatoxin II, a pore-forming toxin from sea anemone Actinia equina. J Membr Biol 173(1):47–55

    CAS  PubMed  Google Scholar 

  • Anderluh G, Dalla Serra M, Viero G, Guella G, Maček P, Menestrina G (2003) Pore formation by equinatoxin II, a eukaryotic protein toxin, occurs by induction of nonlamellar lipid structures. J Biol Chem 278(46):45216–45223

    CAS  PubMed  Google Scholar 

  • Anderluh G, Lakey JH (2008) Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 33(10):482–490

    CAS  PubMed  Google Scholar 

  • Anderluh G, Maček P (2002) Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 40(2):111–124

    CAS  PubMed  Google Scholar 

  • Antonini V, Perez-Barzaga V, Bampi S, Penton D, Martinez D, Dalla Serra M, Tejuca M (2014) Functional characterization of sticholysin I and W111C mutant reveals the sequence of the actinoporin’s pore assembly. PLoS One 9(10), e110824

    PubMed  PubMed Central  Google Scholar 

  • Athanasiadis A, Anderluh G, Maček P, Turk D (2001) Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. Structure 9(4):341–346

    CAS  PubMed  Google Scholar 

  • Baker MA, Rojko N, Cronin B, Anderluh G, Wallace MI (2014) Photobleaching reveals heterogeneous stoichiometry for equinatoxin II oligomers. Chembiochem 15(14):2139–2145

    CAS  PubMed  Google Scholar 

  • Bakrač B, Anderluh G (2010) Molecular mechanism of sphingomyelin-specific membrane binding and pore formation by actinoporins. Adv Exp Med Biol 677:106–115

    PubMed  Google Scholar 

  • Bakrač B, Gutierrez-Aguirre I, Podlesek Z, Sonnen AF, Gilbert RJ, Maček P, Lakey JH, Anderluh G (2008) Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J Biol Chem 283(27):18665–18677

    PubMed  Google Scholar 

  • Bavdek A, Gekara NO, Priselac D, Gutierrez Aguirre I, Darji A, Chakraborty T, Maček P, Lakey JH, Weiss S, Anderluh G (2007) Sterol and pH interdependence in the binding, oligomerization, and pore formation of Listeriolysin O. Biochemistry 46(14):4425–4437

    CAS  PubMed  Google Scholar 

  • Bavdek A, Kostanjšek R, Antonini V, Lakey JH, Dalla Serra M, Gilbert RJ, Anderluh G (2012) pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J 279(1):126–141

    CAS  PubMed  Google Scholar 

  • Belmonte G, Menestrina G, Pederzolli C, Križaj I, Gubenšek F, Turk T, Maček P (1994) Primary and secondary structure of a pore-forming toxin from the sea anemone, Actinia equina L., and its association with lipid vesicles. Biochim Biophys Acta 1192(2):197–204

    CAS  PubMed  Google Scholar 

  • Belmonte G, Pederzolli C, Maček P, Menestrina G (1993) Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes. J Membr Biol 131(1):11–22

    CAS  PubMed  Google Scholar 

  • Bernheimer AW, Avigad LS (1976) Properties of a toxin from the sea anemone Stoichacis helianthus, including specific binding to sphingomyelin. Proc Natl Acad Sci U S A 73(2):467–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhakdi S, Tranum-Jensen J, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47(1):52–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenthal R, Habig WH (1984) Mechanism of tetanolysin-induced membrane damage: studies with black lipid membranes. J Bacteriol 157(1):321–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdeau RW, Malito E, Chenal A, Bishop BL, Musch MW, Villereal ML, Chang EB, Mosser EM, Rest RF, Tang WJ (2009) Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J Biol Chem 284:14645–14656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 23(16):3206–3215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalla Serra M, Menestrina G (2000) Characterization of molecular properties of pore-forming toxins with planar lipid bilayers. Methods Mol Biol 145:171–188

    CAS  PubMed  Google Scholar 

  • Dalla Serra M, Tejuca M (2011) Pore-forming toxins. eLS. doi:10.1002/9780470015902.a0002655.pub2

    Article  Google Scholar 

  • Dowd KJ, Tweten RK (2012) The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. PLoS Pathog 8(7), e1002787

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Rachkidy RG, Davies NW, Andrew PW (2008) Pneumolysin generates multiple conductance pores in the membrane of nucleated cells. Biochem Biophys Res Commun 368(3):786–792

    CAS  PubMed  Google Scholar 

  • Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK (2010) Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci U S A 107(9):4341–4346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feil SC, Ascher DB, Kuiper MJ, Tweten RK, Parker MW (2014) Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. J Mol Biol 426(4):785–792

    CAS  PubMed  Google Scholar 

  • Feil SC, Lawrence S, Mulhern TD, Holien JK, Hotze EM, Farrand S, Tweten RK, Parker MW (2012) Structure of the lectin regulatory domain of the cholesterol-dependent cytolysin lectinolysin reveals the basis for its lewis antigen specificity. Structure 20(2):248–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frazao B, Vasconcelos V, Antunes A (2012) Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs 10(8):1812–1851

    CAS  PubMed  PubMed Central  Google Scholar 

  • From C, Granum PE, Hardy SP (2008) Demonstration of a cholesterol-dependent cytolysin in a noninsecticidal Bacillus sphaericus strain and evidence for widespread distribution of the toxin within the species. FEMS Microbiol Lett 286(1):85–92

    CAS  PubMed  Google Scholar 

  • Garcia-Ortega L, Alegre-Cebollada J, Garcia-Linares S, Bruix M, Martinez-Del-Pozo A, Gavilanes JG (2011) The behavior of sea anemone actinoporins at the water-membrane interface. Biochim Biophys Acta 1808(9):2275–2288

    CAS  PubMed  Google Scholar 

  • Garcia-Saez AJ, Coraiola M, Dalla Serra M, Mingarro I, Muller P, Salgado J (2006) Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid pores. FEBS J 273(5):971–981

    CAS  PubMed  Google Scholar 

  • Gelber SE, Aguilar JL, Lewis KL, Ratner AJ (2008) Functional and phylogenetic characterization of Vaginolysin, the human-specific cytolysin from Gardnerella vaginalis. J Bacteriol 190(11):3896–3903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giddings KS, Johnson AE, Tweten RK (2003) Redefining cholesterol’s role in the mechanism of the cholesterol-dependent cytolysins. Proc Natl Acad Sci U S A 100(20):11315–11320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11(12):1173–1178

    CAS  PubMed  Google Scholar 

  • Gilbert RJ (2005) Inactivation and activity of cholesterol-dependent cytolysins: what structural studies tell us. Structure 13(8):1097–1106

    CAS  PubMed  Google Scholar 

  • Gilbert RJ, Dalla Serra M, Froelich CJ, Wallace MI, Anderluh G (2014) Membrane pore formation at protein-lipid interfaces. Trends Biochem Sci 39(11):510–516

    CAS  PubMed  Google Scholar 

  • Gilbert RJ, Mikelj M, Dalla Serra M, Froelich CJ, Anderluh G (2013) Effects of MACPF/CDC proteins on lipid membranes. Cell Mol Life Sci 70(12):2083–2098

    CAS  PubMed  Google Scholar 

  • Heuck AP, Moe PC, Johnson BB (2010) The cholesterol-dependent cytolysin family of gram-positive bacterial toxins. In: Harris JR (ed) Cholesterol binding and cholesterol transport proteins: structure and function in health and disease. Springer, Dordrecht, pp 551–577

    Google Scholar 

  • Hinds MG, Zhang W, Anderluh G, Hansen PE, Norton RS (2002) Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II: implications for pore formation. J Mol Biol 315(5):1219–1229

    CAS  PubMed  Google Scholar 

  • Hong Q, Gutierrez-Aguirre I, Barlič A, Malovrh P, Kristan K, Podlesek Z, Maček P, Turk D, Gonzalez-Manas JM, Lakey JH, Anderluh G (2002) Two-step membrane binding by Equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. J Biol Chem 277(44):41916–41924

    CAS  PubMed  Google Scholar 

  • Hotze EM, Le HM, Sieber JR, Bruxvoort C, McInerney MJ, Tweten RK (2013) Identification and characterization of the first cholesterol-dependent cytolysins from Gram-negative bacteria. Infect Immun 81(1):216–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hotze EM, Tweten RK (2012) Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 1818(4):1028–1038

    CAS  PubMed  Google Scholar 

  • Hotze EM, Wilson-Kubalek EM, Rossjohn J, Parker MW, Johnson AE, Tweten RK (2001) Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate. J Biol Chem 276(11):8261–8268

    CAS  PubMed  Google Scholar 

  • Iacovache I, van der Goot FG, Pernot L (2008) Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778(7–8):1611–1623

    CAS  PubMed  Google Scholar 

  • Kem WR (1988) Sea anemone toxins: structure and action. In: Hessinger DA, Lenhoff HM (eds) The biology of nematocysts, vol 375–405. Academic, San Diego

    Google Scholar 

  • Kienker PK, Lear JD (1995) Charge selectivity of the designed uncharged peptide ion channel Ac-(LSSLLSL)3-CONH2. Biophys J 68(4):1347–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korchev YE, Bashford CL, Pederzolli C, Pasternak CA, Morgan PJ, Andrew PW, Mitchell TJ (1998) A conserved tryptophan in pneumolysin is a determinant of the characteristics of channels formed by pneumolysin in cells and planar lipid bilayers. Biochem J 329(3):571–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Köster S, van Pee K, Hudel M, Leustik M, Rhinow D, Kuhlbrandt W, Chakraborty T, Yildiz O (2014) Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation. Nat Commun 5:3690

    PubMed  Google Scholar 

  • Kristan K, Viero G, Maček P, Dalla Serra M, Anderluh G (2007) The equinatoxin N-terminus is transferred across planar lipid membranes and helps to stabilize the transmembrane pore. FEBS J 274(2):539–550

    CAS  PubMed  Google Scholar 

  • Kristan KC, Viero G, Dalla Serra M, Maček P, Anderluh G (2009) Molecular mechanism of pore formation by actinoporins. Toxicon 54(8):1125–1134

    PubMed  Google Scholar 

  • Leung C, Dudkina NV, Lukoyanova N, Hodel AW, Farabella I, Pandurangan AP, Jahan N, Pires Damaso M, Osmanovic D, Reboul CF, Dunstone MA, Andrew PW, Lonnen R, Topf M, Saibil HR, Hoogenboom BW (2014) Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin. Elife 3, e04247

    PubMed  PubMed Central  Google Scholar 

  • Malovrh P, Viero G, Dalla Serra M, Podlesek Z, Lakey JH, Maček P, Menestrina G, Anderluh G (2003) A novel mechanism of pore formation: membrane penetration by the N-terminal amphipathic region of equinatoxin. J Biol Chem 278(25):22678–22685

    CAS  PubMed  Google Scholar 

  • Mancheno JM, Martin-Benito J, Martinez-Ripoll M, Gavilanes JG, Hermoso JA (2003) Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. Structure 11(11):1319–1328

    CAS  PubMed  Google Scholar 

  • Marchioretto M, Podobnik M, Dalla Serra M, Anderluh G (2013) What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins. Biophys Chem 182:64–70

    CAS  PubMed  Google Scholar 

  • Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376(3):391–400

    CAS  PubMed  Google Scholar 

  • Mechaly AE, Bellomio A, Gil-Carton D, Morante K, Valle M, Gonzalez-Manas JM, Guerin DM (2011) Structural insights into the oligomerization and architecture of eukaryotic membrane pore-forming toxins. Structure 19(2):181–191

    CAS  PubMed  Google Scholar 

  • Meinardi E, Florin-Christensen M, Paratcha G, Azcurra JM, Florin-Christensen J (1995) The molecular basis of the self/nonself selectivity of a coelenterate toxin. Biochem Biophys Res Commun 216(1):348–354

    CAS  PubMed  Google Scholar 

  • Menestrina G, Bashford CL, Pasternak CA (1990) Pore-forming toxins: experiments with S. aureus alpha-toxin, C. perfringens theta-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. Toxicon 28(5):477–491

    CAS  PubMed  Google Scholar 

  • Menestrina G, Dalla Serra M, Prevost G (2001) Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 39(11):1661–1672

    CAS  PubMed  Google Scholar 

  • Metkar SS, Marchioretto M, Antonini V, Lunelli L, Wang B, Gilbert RJ, Anderluh G, Roth R, Pooga M, Pardo J, Heuser JE, Dalla Serra M, Froelich CJ (2015) Perforin oligomers form arcs in cellular membranes: a locus for intracellular delivery of granzymes. Cell Death Differ 22(1):74–85

    CAS  PubMed  Google Scholar 

  • Michaels DW (1979) Membrane damage by a toxin from the sea anemone Stoichactis helianthus. I. Formation of transmembrane channels in lipid bilayers. Biochim Biophys Acta 555(1):67–78

    CAS  PubMed  Google Scholar 

  • Norton RS (1991) Structure and structure-function relationships of sea anemone proteins that interact with the sodium channel. Toxicon 29(9):1051–1084

    CAS  PubMed  Google Scholar 

  • Ohno-Iwashita Y, Iwamoto M, Ki M, Ando S, Iwashita S (1991) A cytolysin, {theta}-toxin, preferentially binds to membrane cholesterol surrounded by phospholipids with 18-carbon hydrocarbon chains in cholesterol-rich region. J Biochem 110(3):369–375

    CAS  PubMed  Google Scholar 

  • Palmer M, Harris R, Freytag C, Kehoe M, Tranum-Jensen J, Bhakdi S (1998) Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J 17(6):1598–1605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polekhina G, Giddings KS, Tweten RK, Parker MW (2005) Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin. Proc Natl Acad Sci U S A 102(3):600–605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Praper T, Sonnen A, Viero G, Kladnik A, Froelich CJ, Anderluh G, Dalla Serra M, Gilbert RJ (2011) Human perforin employs different avenues to damage membranes. J Biol Chem 286(4):2946–2955

    CAS  PubMed  Google Scholar 

  • Prigent D, Alouf JE (1976) Interaction of steptolysin O with sterols. Biochim Biophys Acta 443(2):288–300

    CAS  PubMed  Google Scholar 

  • Ramachandran R, Heuck AP, Tweten RK, Johnson AE (2002) Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat Struct Biol 9(11):823–827

    CAS  PubMed  Google Scholar 

  • Ramachandran R, Tweten RK, Johnson AE (2004) Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment. Nat Struct Mol Biol 11(8):697–705

    CAS  PubMed  Google Scholar 

  • Ramachandran R, Tweten RK, Johnson AE (2005) The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Proc Natl Acad Sci U S A 102(20):7139–7144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Repp H, Pamukci Z, Koschinski A, Domann E, Darji A, Birringer J, Brockmeier D, Chakraborty T, Dreyer F (2002) Listeriolysin of Listeria monocytogenes forms Ca2+ − permeable pores leading to intracellular Ca2+ oscillations. Cell Microbiol 4(8):483–491

    CAS  PubMed  Google Scholar 

  • Rojko N, Cronin B, Danial JS, Baker MA, Anderluh G, Wallace MI (2014) Imaging the lipid-phase-dependent pore formation of equinatoxin II in droplet interface bilayers. Biophys J 106(8):1630–1637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89(5):685–692

    CAS  PubMed  Google Scholar 

  • Sato TK, Tweten RK, Johnson AE (2013) Disulfide-bond scanning reveals assembly state and beta-strand tilt angle of the PFO beta-barrel. Nat Chem Biol 9(6):383–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99(3):293–299

    CAS  PubMed  Google Scholar 

  • Shepard LA, Shatursky O, Johnson AE, Tweten RK (2000) The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane β-hairpins. Biochemistry 39(33):10284–10293

    CAS  PubMed  Google Scholar 

  • Shewell LK, Harvey RM, Higgins MA, Day CJ, Hartley-Tassell LE, Chen AY, Gillen CM, James DB, Alonzo F 3rd, Torres VJ, Walker MJ, Paton AW, Paton JC, Jennings MP (2014) The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proc Natl Acad Sci U S A 111(49):E5312–E5320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soltani CE, Hotze EM, Johnson AE, Tweten RK (2007) Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Natl Acad Sci U S A 104(51):20226–20231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnen AF, Plitzko JM, Gilbert RJ (2014) Incomplete pneumolysin oligomers form membrane pores. Open Biol 4:140044

    PubMed  PubMed Central  Google Scholar 

  • Tardent P (1995) The cnidarian cnidocyte, a hightech cellular weaponry. Bioessays 17(4):351–362

    Google Scholar 

  • Tejuca M, Dalla Serra M, Potrich C, Alvarez C, Menestrina G (2001) Sizing the radius of the pore formed in erythrocytes and lipid vesicles by the toxin sticholysin I from the sea anemone Stichodactyla helianthus. J Membr Biol 183(2):125–135

    CAS  Google Scholar 

  • Tejuca M, Dalla Serra M, Ferreras M, Lanio ME, Menestrina G (1996) Mechanism of membrane permeabilization by sticholysin I, a cytolysin isolated from the venom of the sea anemone Stichodactyla helianthus. Biochemistry 35(47):14947–14957

    CAS  PubMed  Google Scholar 

  • Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121(2):247–256

    CAS  PubMed  Google Scholar 

  • Valcarcel CA, Dalla Serra M, Potrich C, Bernhart I, Tejuca M, Martinez D, Pazos F, Lanio ME, Menestrina G (2001) Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Biophys J 80(6):2761–2774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varanda W, Finkelstein A (1980) Ion and nonelectrolyte permeability properties of channels formed in planar lipid bilayer membranes by the cytolytic toxin from the sea anemone, Stoichactis helianthus. J Membr Biol 55(3):203–211

    CAS  PubMed  Google Scholar 

  • Wade KR, Hotze EM, Kuiper MJ, Morton CJ, Parker MW, Tweten RK (2015) An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1423754112

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Huang B, Du H, Zhang XC, Xu J, Li X, Rao Z (2010) Crystal structure of cytotoxin protein suilysin from Streptococcus suis. Protein Cell 1(1):96–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XP, Zhai D, Kim E, Swift M, Reed JC, Volkmann N, Hanein D (2013) Three-dimensional structure of Bax-mediated pores in membrane bilayers. Cell Death Dis 4:e683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81(3):1475–1485

    PubMed  PubMed Central  Google Scholar 

  • Zorec R, Tester M, Maček P, Mason WT (1990) Cytotoxicity of equinatoxin II from the sea anemone Actinia equina involves ion channel formation and an increase in intracellular calcium activity. J Membr Biol 118(3):243–249

    CAS  PubMed  Google Scholar 

  • Zwaferink H, Stockinger S, Hazemi P, Lemmens-Gruber R, Decker T (2008) IFN-beta increases listeriolysin O-induced membrane permeabilization and death of macrophages. J Immunol 180(6):4116–4123

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Marta Marchioretto and Valeria Antonini for their help with PLM traces reported in Fig. 11.3a. MZ has been supported by the Marie Curie-PAT Cofund project “NanoArtPore”. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No 226070, project “Trentino”. NR and GA were supported by the Slovenian Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Anderluh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rojko, N., Zanetti, M., Anderluh, G., Dalla Serra, M. (2015). Properties of Pores Formed by Cholesterol-Dependent Cytolysins and Actinoporins. In: Delcour, A.H. (eds) Electrophysiology of Unconventional Channels and Pores. Springer Series in Biophysics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-20149-8_11

Download citation

Publish with us

Policies and ethics