Skip to main content

Staphylococcal β-barrel Pore-Forming Toxins: Mushrooms That Breach the Greasy Barrier

  • Chapter
Electrophysiology of Unconventional Channels and Pores

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 18))

Abstract

Staphylococcus aureus exhibits a myriad of virulence elements, including β-barrel pore-forming toxins (β-PFTs). The primary mission of these protein toxins is to destroy the physical and chemical gradients across the membrane of the targeted cell by generating well-defined transmembrane pores, ultimately causing the cell death. Such a form of biomolecular attack is a ubiquitous membrane-perforation mechanism in numerous organisms, including bacterial systems and eukaryotes. One unusual commonality of the β-PFTs is their amphipathic nature, enabling sophisticated conformational alterations that are required for their transit from the secreting to attacked cell. Intriguingly enough, proteinaceous toxins are secreted as a hydrophilic form. Then, they must navigate within the aqueous phase between the two cells and ultimately breach the hydrophobic barrier posed by the susceptible cell membrane. The archetype of these non-enzymatic staphylococcal β-PFTs is the homoheptameric α-hemolysin (αHL) protein. Moreover, S. aureus has the ability to secrete up to four heteromeric, bi-component β-PFTs. Although the homomeric and heteromeric β-PFTs are related in sequence, homology, and structure, they demonstrate distinct biophysical features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77:3227–3233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aksimentiev A, Schulten K (2005) Imaging {alpha}-Hemolysin with Molecular Dynamics: Ionic Conductance, Osmotic Permeability, and the Electrostatic Potential Map. Biophys J 88:3745–3761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alonzo F III, Torres VJ (2014) The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 78:199–230

    PubMed  PubMed Central  Google Scholar 

  • Astier Y, Bayley H, Howorka S (2005) Protein components for nanodevices. Curr Opin Chem Biol 9:576–584

    CAS  PubMed  Google Scholar 

  • Baaken G, Ankri N, Schuler AK, Ruhe J, Behrends JC (2011) Nanopore-based single-molecule mass spectrometry on a lipid membrane microarray. ACS Nano 5:8080–8088

    CAS  PubMed  Google Scholar 

  • Balijepalli A, Ettedgui J, Cornio AT, Robertson JW, Cheung KP, Kasianowicz JJ, Vaz C (2014) Quantifying short-lived events in multistate ionic current measurements. ACS Nano 8:1547–1553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayley H (2006) Sequencing single molecules of DNA. Curr Opin Chem Biol 10:628–637

    CAS  PubMed  Google Scholar 

  • Bayley H, Braha O, Cheley S, Gu LQ (2004) Engineered nanopores. In: Mirkin CA, Niemeyer CM (eds) NanoBiotechnology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 93–112

    Google Scholar 

  • Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413:226–230

    CAS  PubMed  Google Scholar 

  • Bayley H, Jayasinghe L (2004) Functional engineered channels and pores (review). Mol Membr Biol 21:209–220

    CAS  PubMed  Google Scholar 

  • Benner S, Chen RJ, Wilson NA, Abu-Shumays R, Hurt N, Lieberman KR, Deamer DW, Dunbar WB, Akeson M (2007) Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat Nanotechnol 2:718–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bezrukov SM (2000) Ion channels as molecular Coulter counters to probe metabolite transport. J Membr Biol 174:1–13

    CAS  PubMed  Google Scholar 

  • Bezrukov SM, Kasianowicz JJ (1993) Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Phys Rev Lett 70:2352–2355

    CAS  PubMed  Google Scholar 

  • Bezrukov SM, Krasilnikov OV, Yuldasheva LN, Berezhkovskii AM, Rodrigues CG (2004) Field-Dependent Effect of Crown Ether (18-Crown-6) on Ionic Conductance of {alpha}-Hemolysin Channels. Biophys J 87:3162–3171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bezrukov SM, Vodyanoy I, Brutyan RA, Kasianowicz JJ (1996) Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 29:8517–8522

    CAS  Google Scholar 

  • Bischofberger M, Gonzalez MR, van der Goot FG (2009) Membrane injury by pore-forming proteins. Curr Opin Cell Biol 21:589–595

    CAS  PubMed  Google Scholar 

  • Braha O, Walker B, Cheley S, Kasianowicz JJ, Song LZ, Gouaux JE, Bayley H (1997) Designed protein pores as components for biosensors. Chem Biol 4:497–505

    CAS  PubMed  Google Scholar 

  • Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brochard-Wyart F, De Gennes P-G, Sandre O (2000) Transient pores in stretched vesicles: role of leak-out. Physica A 278:32–51

    CAS  Google Scholar 

  • Cheley S, Malghani MS, Song LZ, Hobaugh M, Gouaux JE, Yang J, Bayley H (1997) Spontaneous oligomerization of a staphylococcal alpha-hemolysin conformationally constrained by removal of residues that form the transmembrane beta-barrel. Protein Eng 10:1433–1443

    CAS  PubMed  Google Scholar 

  • Cherf GM, Lieberman KR, Rashid H, Lam CE, Karplus K, Akeson M (2012) Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat Biotechnol 30:344–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comai M, Serra MD, Coraiola M, Werner S, Colin DA, Monteil H, Prevost G, Menestrina G (2002) Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal gamma- haemolysins in lipid membranes. Molecular Microbiology 44:1251–1267

    CAS  PubMed  Google Scholar 

  • Czajkowsky DM, Sheng ST, Shao ZF (1998) Staphylococcal alpha-hemolysin can form hexamers in phospholipid bilayers. J Mol Biol 276:325–330

    CAS  PubMed  Google Scholar 

  • De Gennes P-G (1999a) Flexible polymers in nanopores. Adv Polym Sci 138:91–105

    Google Scholar 

  • De Gennes P-G (1999b) Passive entry of a DNA molecule into a small pore. Proc Natl Acad Sci U S A 96:7262–7264

    PubMed  PubMed Central  Google Scholar 

  • De Gennes P-G (1999c) Problems of DNA entry into a cell. Physica A 274:1–7

    Google Scholar 

  • DuMont AL, Torres VJ (2014) Cell targeting by the Staphylococcus aureus pore-forming toxins: it’s not just about lipids. Trends Microbiol 22:21–27

    CAS  PubMed  Google Scholar 

  • Fang Y, Cheley S, Bayley H, Yang J (1997) The heptameric prepore of a Staphylococcal alpha-hemolysin mutant in lipid bilayers imaged by atomic force microscopy. Biochemistry 36:9518–9522

    CAS  PubMed  Google Scholar 

  • Ferreras M, Hoper F, Dalla Serra M, Colin DA, Prevost G, Menestrina G (1998) The interaction of Staphylococcus aureus bi-component gamma- hemolysins and leucocidins with cells and lipid membranes. Biochim Biophys Acta -Biomembr 1414:108–126

    CAS  Google Scholar 

  • Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Freche B (2008) Bacterial pore-forming toxins: the (w)hole story? Cell Mol Life Sci 65:493–507

    CAS  PubMed  Google Scholar 

  • Goodrich CP, Kirmizialtin S, Huyghues-Despointes BM, Zhu AP, Scholtz JM, Makarov DE, Movileanu L (2007) Single-molecule electrophoresis of beta-hairpin peptides by electrical recordings and Langevin dynamics simulations. J Phys Chem B 111:3332–3335

    CAS  PubMed  Google Scholar 

  • Gouaux E (1998) Alpha-hemolysin from staphylococcus aureus: an archetype of beta-barrel, channel-forming toxins. J Struct Biol 121:110–122

    CAS  PubMed  Google Scholar 

  • Gouaux E, Hobaugh M, Song LZ (1997) Alpha-hemolysin, gamma-hemolysin, and leukocidin from staphylococcus aureus: distant in sequence but similar in structure. Protein Sci 6:2631–2635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gouaux JE, Braha O, Hobaugh MR, Song LZ, Cheley S, Shustak C, Bayley H (1994) Subunit stoichiometry of staphylococcal Alfa-hemolysin in crystals and on membranes - a heptameric transmembrane pore. Proc Natl Acad Sci U S A 91:12828–12831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu LQ, Bayley H (2000) Interaction of the noncovalent molecular adapter, beta- cyclodextrin, with the staphylococcal alpha-hemolysin pore. Biophys J 79:1967–1975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu LQ, Braha O, Conlan S, Cheley S, Bayley H (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–690

    CAS  PubMed  Google Scholar 

  • Gu LQ, Cheley S, Bayley H (2003) Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Proc Natl Acad Sci U S A 100:15498–15503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillet V, Roblin P, Werner S, Coraiola M, Menestrina G, Monteil H, Prevost G, Mourey L (2004) Crystal structure of leucotoxin S component: new insight into the Staphylococcal beta-barrel pore-forming toxins. J Biol Chem 279:41028–41037

    CAS  PubMed  Google Scholar 

  • Gurnev PA, Nestorovich EM (2014) Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 6:2483–2540

    CAS  Google Scholar 

  • Hall AR, Scott A, Rotem D, Mehta KK, Bayley H, Dekker C (2010) Hybrid pore formation by directed insertion of alpha-haemolysin into solid-state nanopores. Nat Nanotechnol 5:874–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heuck AP, Tweten RK, Johnson AE (2001) Beta-Barrel pore-forming toxins: intriguing dimorphic proteins. Biochemistry 40:9065–9073

    CAS  PubMed  Google Scholar 

  • Holden MA, Jayasinghe L, Daltrop O, Mason A, Bayley H (2006) Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording. Nat Chem Biol 2:314–318

    CAS  PubMed  Google Scholar 

  • Hornblower B, Coombs A, Whitaker RD, Kolomeisky A, Picone SJ, Meller A, Akeson M (2007) Single-molecule analysis of DNA-protein complexes using nanopores. Nat Methods 4:315–317

    CAS  PubMed  Google Scholar 

  • Howorka S, Movileanu L, Lu XF, Magnon M, Cheley S, Braha O, Bayley H (2000) A protein pore with a single polymer chain tethered within the lumen. J Am Chem Soc 122:2411–2416

    CAS  Google Scholar 

  • Howorka S, Siwy Z (2008) Nanopores: generation, engineering and single-molecule applications. In: Hinterdorfer P (ed) Handbook of single-molecule biophysics. Springer, New York

    Google Scholar 

  • Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360–2384

    CAS  PubMed  Google Scholar 

  • Iacovache I, Bischofberger M, van der Goot FG (2010) Structure and assembly of pore-forming proteins. Curr Opin Struct Biol 20:241–246

    CAS  PubMed  Google Scholar 

  • Iacovache I, van der Goot FG, Pernot L (2008) Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778:1611–1623

    CAS  PubMed  Google Scholar 

  • Jayasinghe L, Bayley H (2005) The leukocidin pore: evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis. Protein Sci 14:2550–2561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung Y, Bayley H, Movileanu L (2006) Temperature-responsive protein pores. J Am Chem Soc 128:15332–15340

    CAS  PubMed  Google Scholar 

  • Kang XF, Gu LQ, Cheley S, Bayley H (2005) Single protein pores containing molecular adapters at high temperatures. Angew Chem Int Ed Engl 44:1495–1499

    CAS  PubMed  Google Scholar 

  • Kasianowicz JJ, Bezrukov SM (1995) Protonation dynamics of the alpha-toxin ion-channel from spectral-analysis of ph-dependent current fluctuations. Biophys J 69:94–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93:13770–13773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolomeisky AB (2007) Channel-facilitated molecular transport across membranes: attraction, repulsion, and asymmetry. Phys Rev Lett 98:048105

    PubMed  Google Scholar 

  • Kolomeisky AB (2008) How polymers translocate through pores: memory is important. Biophys J 94:1547–1548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong CY, Muthukumar M (2005) Simulations of stochastic sensing of proteins. J Am Chem Soc 127:18252–18261

    CAS  PubMed  Google Scholar 

  • Korchev YE, Alder GM, Bakhramov A, Bashford CL, Joomun BS, Sviderskaya EV, Usherwood PN, Pasternak CA (1995) Staphylococcus aureus alpha-toxin-induced pores: channel-like behavior in lipid bilayers and patch clamped cells. J Membr Biol 143:143–151

    CAS  PubMed  Google Scholar 

  • Krasilnikov OV, Bezrukov SM (2004) Polymer partitioning from nonideal solutions into protein voids. Macromolecules 37:2650–2657

    CAS  Google Scholar 

  • Krasilnikov OV, Merzlyak PG, Yuldasheva LN, Rodrigues CG, Bhakdi S, Valeva A (2000) Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha-toxin in planar lipid bilayers. Molecular Microbiology 37:1372–1378

    CAS  PubMed  Google Scholar 

  • Krasilnikov OV, Rodrigues CG, Bezrukov SM (2006) Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Phys Rev Lett 97:018301

    PubMed  Google Scholar 

  • Kusters I, van Oijen AM, Driessen AJ (2014) Membrane-on-a-chip: microstructured silicon/silicon-dioxide chips for high-throughput screening of membrane transport and viral membrane fusion. ACS Nano 8:3380–3392

    CAS  PubMed  Google Scholar 

  • Los FC, Randis TM, Aroian RV, Ratner AJ (2013) Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 77:173–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A (2012) Modeling and simulation of ion channels. Chem Rev 112:6250–6284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maglia G, Heron AJ, Hwang WL, Holden MA, Mikhailova E, Li Q, Cheley S, Bayley H (2009) Droplet networks with incorporated protein diodes show collective properties. Nat Nanotechnol 4:437–440

    CAS  PubMed  Google Scholar 

  • Maglia G, Restrepo MR, Mikhailova E, Bayley H (2008) Enhanced translocation of single DNA molecules through {alpha}-hemolysin nanopores by manipulation of internal charge. Proc Natl Acad Sci U S A 105:19720–19725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majd S, Yusko EC, Billeh YN, Macrae MX, Yang J, Mayer M (2010) Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol 21:439–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer M, Yang J (2013) Engineered ion channels as emerging tools for chemical biology. Acc Chem Res 46:2998–3008

    CAS  PubMed  Google Scholar 

  • Meller A, Nivon L, Brandin E, Golovchenko J, Branton D (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci U S A 97:1079–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menestrina G (1986) Ionic channels formed by staphylococcus-aureus alpha-toxin – voltage-dependent inhibition by divalent and trivalent cations. J Membr Biol 90:177–190

    CAS  PubMed  Google Scholar 

  • Menestrina G, Dalla Serra M, Prevost G (2001) Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 39:1661–1672

    CAS  PubMed  Google Scholar 

  • Menestrina G, Dalla SM, Comai M, Coraiola M, Viero G, Werner S, Colin DA, Monteil H, Prevost G (2003) Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus. FEBS Lett 552:54–60

    CAS  PubMed  Google Scholar 

  • Miles G, Bayley H, Cheley S (2002a) Properties of Bacillus cereus hemolysin II: a heptameric transmembrane pore. Protein Sci 11:1813–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miles G, Cheley S, Braha O, Bayley H (2001) The staphylococcal leukocidin bicomponent toxin forms large ionic channels. Biochemistry 40:8514–8522

    CAS  PubMed  Google Scholar 

  • Miles G, Movileanu L, Bayley H (2002b) Subunit composition of a bicomponent toxin: staphylococcal leukocidin forms an octameric transmembrane pore. Protein Sci 11:894–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misakian M, Kasianowicz JJ (2003) Electrostatic influence on ion transport through the alphaHL channel. J Membr Biol 195:137–146

    CAS  PubMed  Google Scholar 

  • Mohammad MM, Iyer R, Howard KR, McPike MP, Borer PN, Movileanu L (2012) Engineering a rigid protein tunnel for biomolecular detection. J Am Chem Soc 134:9521–9531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammad MM, Movileanu L (2010) Impact of distant charge reversals within a robust beta-barrel protein pore. J Phys Chem B 114:8750–8759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montoya M, Gouaux E (2003) Beta-barrel membrane protein folding and structure viewed through the lens of alpha-hemolysin. Biochim Biophys Acta 1609:19–27

    CAS  PubMed  Google Scholar 

  • Movileanu L (2008) Squeezing a single polypeptide through a nanopore. Soft Matter 4:925–931

    CAS  PubMed  Google Scholar 

  • Movileanu L (2009) Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol 27:333–341

    CAS  PubMed  Google Scholar 

  • Movileanu L, Bayley H (2001) Partitioning of a polymer into a nanoscopic protein pore obeys a simple scaling law. Proc Natl Acad Sci U S A 98:10137–10141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Movileanu L, Cheley S, Bayley H (2003) Partitioning of individual flexible polymers into a nanoscopic protein pore. Biophys J 85:897–910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Movileanu L, Cheley S, Howorka S, Braha O, Bayley H (2001) Location of a constriction in the lumen of a transmembrane pore by targeted covalent attachment of polymer molecules. J Gen Physiol 117:239–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Movileanu L, Howorka S, Braha O, Bayley H (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotechnol 18:1091–1095

    CAS  PubMed  Google Scholar 

  • Movileanu L, Schmittschmitt JP, Scholtz JM, Bayley H (2005) Interactions of the peptides with a protein pore. Biophys J 89:1030–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumar M (1999) Polymer translocation through a hole. J Chem Phys 111:10371–10374

    CAS  Google Scholar 

  • Muthukumar M (2007) Mechanism of DNA transport through pores. Annu Rev Biophys Biomol Struct 36:435–450

    CAS  PubMed  Google Scholar 

  • Nivala J, Marks DB, Akeson M (2013) Unfoldase-mediated protein translocation through an alpha-hemolysin nanopore. Nat Biotechnol 31:247–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noskov SY, Im W, Roux B (2004) Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. Biophys J 87:2299–2309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olson R, Nariya H, Yokota K, Kamio Y, Gouaux E (1999) Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat Struct Biol 6:134–140

    CAS  PubMed  Google Scholar 

  • Otto M (2014) Staphylococcus aureus toxins. Curr Opin Microbiol 17:32–37

    CAS  PubMed  Google Scholar 

  • Parker MW, Feil SC (2005) Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 88:91–142

    CAS  PubMed  Google Scholar 

  • Pedelacq JD, Maveyraud L, Prevost G, Baba-Moussa L, Gonzalez A, Courcelle E, Shepard W, Monteil H, Samama JP, Mourey L (1999) The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 7:277–287

    CAS  PubMed  Google Scholar 

  • Potrich C, Bastiani H, Colin DA, Huck S, Prevost G, Dalla SM (2009) The influence of membrane lipids in Staphylococcus aureus gamma-hemolysins pore formation. J Membr Biol 227:13–24

    CAS  PubMed  Google Scholar 

  • Prevost G, Mourey L, Colin DA, Menestrina G (2001) Staphylococcal pore-forming toxins. Pore-Forming Toxins 257:53–83

    CAS  Google Scholar 

  • Reiner JE, Kasianowicz JJ, Nablo BJ, Robertson JW (2010) Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc Natl Acad Sci U S A 107:12080–12085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson JW, Kasianowicz JJ, Reiner JE (2010) Changes in ion channel geometry resolved to sub-angstrom precision via single molecule mass spectrometry. J Phys Condens Matter 22:454108

    PubMed  Google Scholar 

  • Robertson JW, Rodrigues CG, Stanford VM, Rubinson KA, Krasilnikov OV, Kasianowicz JJ (2007) Single-molecule mass spectrometry in solution using a solitary nanopore. Proc Natl Acad Sci U S A 104:8207–8211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues CG, Machado DC, Chevtchenko SF, Krasilnikov OV (2008) Mechanism of KCl enhancement in detection of nonionic polymers by nanopore sensors. Biophys J 95:5186–5192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Larrea D, Bayley H (2013) Multistep protein unfolding during nanopore translocation. Nat Nanotechnol 8:288–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sackmann B, Neher E (1995) Single-channel recording. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Sanchez-Quesada J, Ghadiri MR, Bayley H, Braha O (2000) Cyclic peptides as molecular adapters for a pore-forming protein. J Am Chem Soc 122:11757–11766

    CAS  Google Scholar 

  • Siwy ZS, Howorka S (2010) Engineered voltage-responsive nanopores. Chem Soc Rev 39:1115–1132

    CAS  PubMed  Google Scholar 

  • Slonkina E, Kolomeisky AB (2003) Polymer translocation through a long nanopore. J Chem Phys 118:7112–7118

    CAS  Google Scholar 

  • Song LZ, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    CAS  PubMed  Google Scholar 

  • Sugawara-Tomita N, Tomita T, Kamio Y (2002) Stochastic assembly of two-component staphylococcal gamma- hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3: 4 and 4: 3. J Bacteriol 184:4747–4756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland TC, Long YT, Stefureac RI, Bediako-Amoa I, Kraatz HB, Lee JS (2005) Structure of peptides investigated by nanopore analysis. Nano Lett 4:1273–1277

    Google Scholar 

  • Tian P, Andricioaei I (2005) Repetitive pulling catalyzes co-translocational unfolding of barnase during import through a mitochondrial pore. J Mol Biol 350:1017–1034

    CAS  PubMed  Google Scholar 

  • Walker B, Bayley H (1995) Restoration of pore-forming activity in staphylococcal alfa-hemolysin by targeted covalent modification. Protein Eng 8:491–495

    CAS  PubMed  Google Scholar 

  • Wang HY, Gu Z, Cao C, Wang J, Long YT (2013a) Analysis of a single alpha-synuclein fibrillation by the Interaction with a Protein Nanopore. Anal Chem 85:8254–8261

    Google Scholar 

  • Wang S, Haque F, Rychahou PG, Evers BM, Guo P (2013b) Engineered nanopore of Phi29 DNA-packaging motor for real-time detection of single colon cancer specific antibody in serum. ACS Nano 7:9814–9822

    Google Scholar 

  • Wang Y, Zheng D, Tan Q, Wang MX, Gu LQ (2011) Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat Nanotechnol 6:668–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wells DB, Abramkina V, Aksimentiev A (2007) Exploring transmembrane transport through alpha-hemolysin with grid-steered molecular dynamics. J Chem Phys 127:125101

    PubMed  PubMed Central  Google Scholar 

  • Werner S, Colin DA, Coraiola M, Menestrina G, Monteil H, Prevost G (2002) Retrieving biological activity from LukF-PV mutants combined with different S components implies compatibility between the stem domains of these staphylococcal bicomponent leucotoxins. Infect Immun 70:1310–1318

    CAS  PubMed  PubMed Central  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    CAS  PubMed  Google Scholar 

  • Wimley WC (2003) The versatile beta-barrel membrane protein. Curr Opin Struct Biol 13:404–411

    CAS  PubMed  Google Scholar 

  • Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Ohta M, Kamio Y, Yao M, Tanaka I (2011) Crystal structure of the octameric pore of staphylococcal gamma-hemolysin reveals the beta-barrel pore formation mechanism by two components. Proc Natl Acad Sci U S A 108:17314–17319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoong P, Torres VJ (2013) The effects of Staphylococcus aureus leukotoxins on the host: cell lysis and beyond. Curr Opin Microbiol 16:63–69

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to members of the Movileanu laboratory for their constructive comments. We realized the challenging nature of writing a chapter about a β-barrel toxin that has transformed the area of nanopore biophysics. Therefore, we regret that due to space limitations we were unable to introduce all exciting publications pertinent to this field. This work was supported by the National Institutes of Health, Grant GM088403 (to L.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Movileanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gugel, J.F., Movileanu, L. (2015). Staphylococcal β-barrel Pore-Forming Toxins: Mushrooms That Breach the Greasy Barrier. In: Delcour, A.H. (eds) Electrophysiology of Unconventional Channels and Pores. Springer Series in Biophysics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-20149-8_10

Download citation

Publish with us

Policies and ethics