Skip to main content

Sulfur Metabolism in Hemiascomycetes Yeast

  • Chapter
  • 901 Accesses

Part of the book series: Proceedings of the International Plant Sulfur Workshop ((PIPSW))

Abstract

Sulfur metabolism is a central function of the cell. It has been extensively studied in the model yeast Saccharomyces cerevisiae. A comparative genomic study carried out across the hemiascomycetes clade has shown that S. cerevisiae displayed specificities not shared by the other yeast species. For instance, an O-acetylserine pathway was shown to be present in many yeast species. The complex regulatory pathway seems also to be conserved, with the exception of MET28, whose presence seems to be restricted to S. cerevisiae and related species. In order to explore this pathway in two distant yeast species, Kluyveromyces lactis and Yarrowia lipolytica, transcriptomic and metabolomic studies have been carried out in different conditions of sulfur supply. These high-throughput techniques allowed confirmation of the data of the comparative genomics but also the investigation of new components and new functions linked to sulfur metabolism, for instance, the role of the O-acetylserine pathway in cysteine biogenesis and the role of the aminotransferases in the degradation of methionine were confirmed. The screening of the pools of metabolic intermediates affected by the sulfur supply allowed the identification of new components of the pathway in Y. lipolytica such as taurine and hypotaurine, which seemed to play a role of sulfur storage. These methods also allowed the identification of the set of transporters involved in sulfur metabolism. Eventually, the comparison of these results with the data accumulated in the model S. cerevisiae highlighted the large-scale conservation of this pathway but also the large diversity in the regulated steps inside the pathway.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agnello G, Chang LL, Lamb CM, Georgiou G, Stone EM (2013) Discovery of a substrate selectivity motif in amino acid decarboxylases unveils a taurine biosynthetic pathway in prokaryotes. ACS Chem Biol 8:2264–2271

    Article  CAS  PubMed  Google Scholar 

  • Barbey R, Baudouin-Cornu P, Lee TA, Rouillon A, Zarzov P, Tyers M, Thomas D (2005) Inducible dissociation of SCF(Met30) ubiquitin ligase mediates a rapid transcriptional response to cadmium. EMBO J 24:521–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baudouin-Cornu P, Labarre J (2006) Regulation of cadmium stress response through SCF-like ubiquitin ligases: comparison between Saccharomyces cerevisiae, Schizosacchromyces pombe and mammalian cells. Biochimie 88:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Bondar DC, Beckerich JM, Bonnarme P (2005) Involvement of a branched-chain aminotransferase in production of volatile sulfur compounds in Yarrowia lipolytica. Appl Environ Microbiol 71:4585–4591

    Article  CAS  PubMed  Google Scholar 

  • Bonnarme P, Amarita F, Chambellon E, Semn E, Spinnler HE, Yvon M (2004) Methylthioacetaldehyde, a possible intermediate metabolite for the production of volatile sulphur compounds from L-methionine by Lactococcus lactis. FEMS Microbiol Lett 236:85–90

    CAS  PubMed  Google Scholar 

  • Chandrasekaran S, Skowyra D (2008) The emerging regulatory potential of SCFMert30-mediated polyubiquitination and proteolysis of the Met4 transcriptional activator. Cell Div 3:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Chandrasekaran S, Deffenbaugh AE, Ford DA, Bailly E, Mathias N, Skowyra D (2006) Destabilization of binding to cofactors and SCFMet30 is the rate-limiting regulatory step in degradation of polyubiquitinated Met4. Mol Cell 24:689–699

    Article  CAS  PubMed  Google Scholar 

  • Cholet O, Hénaut A, Casaregola S, Bonnarme P (2007) Gene expression and biochemical analysis of cheese-ripening yeast: focus on catabolism of L-methionine, lactate and lactose. Appl Environ Microbiol 73:2561–2570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dominy JE Jr, Simmons CR, Hirschberger LL, Hwang J, Coloso RM, Stipanuk MH (2007) Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J Biol Chem 282:25189–25198

    Article  CAS  PubMed  Google Scholar 

  • Dujon B (2006) Yeasts illustrate the molecular mechanisms of the eukaryotic genome evolution. Trends Genet 22:375–387

    Article  CAS  PubMed  Google Scholar 

  • Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Mark C, Neuvéglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisramé A, Boyer J, Cattolica L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wésolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  PubMed  Google Scholar 

  • Fauchon M, Lagniel G, Aude JC, Lombardia L, Soularue P, Petat C, Marguerie G, Sentenac A, Werner M, Labarre J (2002) Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 9:713–723

    Article  CAS  PubMed  Google Scholar 

  • Flick K, Ouni I, Wohlschlegel JA, Capati C, McDonald WH, Yates JR, Kaiser P (2004) Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain. Nat Cell Biol 6:634–641

    Article  CAS  PubMed  Google Scholar 

  • Godat E, Madalinski G, Muller L, Heilier JF, Labarre J, Junot C (2010) Mass spectrometry-based methods for the determination of sulfur and related metabolite concentrations in cell extracts. Methods Enzymol 473:41–76

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Johannesen PF (2000) Cysteine is essential for transcription regulation of the sulfur assimilation genes in Saccharomyces cerevisiae. Mol Gen Genet 263:535–542

    Article  CAS  PubMed  Google Scholar 

  • Hazelwood LA, Tai SL, Boer VM, de Winde JH, Pronk JT, Daran JM (2006) A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched organic acids produced by amino acid catabolism. FEMS Yeast Res 6:937–945

    Article  CAS  PubMed  Google Scholar 

  • Hébert A, Casaregola S, Beckerich JM (2011a) Biodiversity in sulfur metabolism in hemiascomycetous yeasts. FEMS Yeast Res 11:366–378

    Article  PubMed  Google Scholar 

  • Hébert A, Forquin-Gomez MP, Roux A, Aubert J, Junot C, Loux V, Heilier JF, Bonnarme P, Beckerich JM, Landaud S (2011b) Exploration of the sulfur metabolism in the yeast Kluyveromyces lactis. Appl Microbiol Biotechnol 91:1409–1423

    Article  PubMed  Google Scholar 

  • Hébert A, Forquin-Gomez MP, Roux A, Aubert J, Junot C, Heilier JF, Landaud S, Bonnarme P, Beckerich JM (2013) New insight into sulfur metabolism as revealed by studies of Yarrowia lipolytica. Appl Environ Microbiol 79:1200–1211

    Article  PubMed Central  PubMed  Google Scholar 

  • Hickman MJ, Petti AA, Ho-Shing O, Silverman SJ, McIsaac RS, Lee TA, Botstein D (2011) Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast. Mol Biol Cell 22:4192–4204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kagkli DM, Bonnarme P, Neuvéglise C (2006) L-methionine degradation pathway in Kluyveromyces lactis: identification and functional analysis of the genes encoding L-methionine aminotransferase. Appl Environ Microbiol 72:3330–3335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaiser P, Su N-Y, Yen JL, Ouni I, Flick K (2006) The yeast ubiquitin ligase SCFMet30: connecting environmental and intracellular conditions to cell division. Cell Div 1:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Knijnenburg TA, Daran JM, van den Broek MA, Daran-Lapujade PA, de Winde JH, Pronk JT, Reinders MJ, Wessels LF (2009) Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data. BMC Genomics 10:53

    Article  PubMed Central  PubMed  Google Scholar 

  • Kraidlova L, Van Zeebroeck G, Van Dijck P, Sychrová H (2011) The Candida albicans GAP gene family encodes permeases involved in general and specific amino acid uptake and sensing. Eukaryot Cell 10:1219–1229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lafaye A, Junot C, Pereira Y, Lagniel G, Tabet JC, Ezan E, Labarre J (2005) Combined proteome and metabolite-profiling analyses reveal surprising insights into yeast sulfur metabolism. J Biol Chem 280:24723–24730

    Article  CAS  PubMed  Google Scholar 

  • Lee TA, Jorgensen P, Bognar AL, Peyraud C, Thomas D, Tyers M (2010) Dissection of combinatorial control by the Met4 transcriptional complex. Mol Biol Cell 21:456–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linder T (2012) genomics of alternative sulfur utilization in ascomycetous yeasts. Microbiology 158:2585–2597

    Article  CAS  PubMed  Google Scholar 

  • Maftahi M, Gaillardin C, Nicaud JM (1996) Sticky-end polymerase chain reaction method for systematic gene disruption in Saccharomyces cerevisiae. Yeast 12:859–868

    Article  CAS  PubMed  Google Scholar 

  • Mansour S, Beckerich JM, Bonnarme P (2008) Lactate and aminoacid catabolism in the cheese ripening yeast Yarrowia lipolytica. Appl Environ Microbiol 74:6505–6512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McIsaac RS, Petti AA, Bussemaker HJ, Botstein D (2012) Perturbation-based analysis and modeling of combinatorial regulation in the yeast sulfur assimilation pathway. Cell 154:2993–3007

    Google Scholar 

  • Ouni I, Flick K, Kaiser P (2010) A transcriptional activator is part of an SCF ubiquitin ligase to control degradation of its cofactors. Mol Cell 40:954–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petti AA, McIsaac RS, Ho-Shing O, Bussemaker HJ, Botstein D (2012) Combinatorial control of diverse metabolic and physiological functions by transcriptional regulators of the yeast sulfur assimilation pathway. Mol Biol Cell 23:3008–3024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sadhu MJ, Moresco JJ, Zimmer AD, Yates JR 3rd, Rine J (2014) Multiple inputs control sulfur-containing amino-acid synthesis in Saccharomyces cerevisiae. Mol Biol Cell 25:1653–1665

    Article  PubMed Central  PubMed  Google Scholar 

  • Siggers T, Duyzend MH, Reddy J, Khan S, Bulyk ML (2011) Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex. Mol Syst Biol 7:555

    Article  PubMed Central  PubMed  Google Scholar 

  • Sohn MJ, Yoo SJ, Oh D-B, Kwon O, Lee SY, Sibirny AA, Kangf HA (2014) Novel cysteine-centered sulfur metabolic pathway in the thermotolerant methylotrophic yeast Hansenula polymorpha. PLoS One 9:e100725

    Article  PubMed Central  PubMed  Google Scholar 

  • Stipanuk MH, Ueki I (2011) Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis 34:17–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tyrrell A, Flick K, Kleiger G, Zhang H, Deshaies RJ, Kaiser P (2010) Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated proteins. Proc Natl Acad Sci U S A 107:19796–19801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yen JL, Flick K, Papagiannis CV, Mathur R, Mathur R, Tyrrell A, Ouni I, Kaake RM, Huang L, Kaiser P (2012) Signal-induced disassembly of the SCF ubiquitin ligase complex by Cdc48/p97. Mol Cell 48:288–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The major part of the experimental data presented in this text have been acquired during the EcoMet ANR program (ANR-06-PNRA-014). We want to thank our colleagues, P. Bonnarme and M.P. Forquin of the GMPA in Grignon, S. Casaregola of the CIRM-levures in Grignon, J. Aubert of the MIA UMR in Paris, V. Loux of the MIG lab in Jouy-en-Josas, and A. Roux and C. Junot of CEA-Saclay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Beckerich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beckerich, JM., Landaud, S., Onésime, D., Hébert, A. (2015). Sulfur Metabolism in Hemiascomycetes Yeast. In: De Kok, L., Hawkesford, M., Rennenberg, H., Saito, K., Schnug, E. (eds) Molecular Physiology and Ecophysiology of Sulfur. Proceedings of the International Plant Sulfur Workshop. Springer, Cham. https://doi.org/10.1007/978-3-319-20137-5_5

Download citation

Publish with us

Policies and ethics