Apon, A., Ahalt, S., Dantuluri, V., Gurdgiev, C., Limayem, M., Ngo, L., Stealey, M.: High performance computing instrumentation and research productivity in US universities. J. Inf. Technol. Impact 10(2), 87–98 (2010)
Google Scholar
Boehm, B., Abts, C., Brown, A.W., Chulani, S., Clark, B., Horowitz, E., Madachy, R., Reifer, D., Steece, B.: COCOMO II Model Definition Manual, Version 2.1. Technical report, University of Southern California (2000)
Google Scholar
Chew, W.: No-nonsense guide to measuring productivity. Harvard Bus. Rev. 66(1), 110–118 (1988)
MathSciNet
Google Scholar
Culler, D.E., Karp, R.M., Patterson, D.A., Sahay, A., Schauser, K.E., Santos, E., Subramonian, R., von Eicken, T.: LogP: Towards a Realistic Model of Parallel Computation. Technical report, Berkeley (1992)
Google Scholar
Dongarra, J., Graybill, R., Harrod, W., Lucas, R., Lusk, E., Luszczek, P., Mcmahon, J., Snavely, A., Vetter, J., Yelick, K., Alam, S., Campbell, R., Carrington, L., Chen, T.Y., Khalili, O., Meredith, J., Tikir, M.: DARPA’s HPCS program: history, models, tools, languages. In: Zelkowitz, M.V. (ed.) Advances in COMPUTERS High Performance Computing, Advances in Computers, vol. 72, pp. 1–100. Elsevier (2008)
Google Scholar
Ebcioglu, K., Sarkar, V., El-Ghazawi, T., Urbanic, J., Center, P.: An experiment in measuring the productivity of three parallel programming languages. In: Workshop on Productivity and Performance in High-End Computing (P-PHEC), pp. 30–36 (2006)
Google Scholar
European Commission: Guide to Financial Issues relating to FP7 Indirect Actions (2013)
Google Scholar
Faulk, S., Gustafson, J., Johnson, P., Porter, A., Tichy, W., Votta, L.: Measuring high performance computing productivity. Int. J. High Perform. Comput. Appl. 18(4), 459–473 (2004)
CrossRef
Google Scholar
German Science Foundation (DFG): Personalmittelsätze der DFG für das Jahr (2013)
Google Scholar
Göbbert, J.H., Gauding, M.: psOpen (2015). http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/psOpen/_node.html
InfiniBand Trade Association (2015). http://www.infinibandta.org/
Intel Corporation: Intel Processor ARK (2015). http://ark.intel.com/
Joseph, E.C., Conway, S., Dekate, C.: Creating Economic Models Showing the Relationship Between Investments in HPC and the Resulting Financial ROI and Innovation and How It Can Impact a Nation’s Competitiveness and Innovation. International Data Corporation (IDC), Technical report (2013)
Google Scholar
Kennedy, K., Koelbel, C., Schreiber, R.: Defining and measuring the productivity of programming languages. Int. J. High Perform. Comput. Appl. 18(4), 441–448 (2004)
CrossRef
Google Scholar
Kepner, J.: High performance computing productivity model synthesis. Int. J. High Perform. Comput. Appl. 18(4), 505–516 (2004)
CrossRef
Google Scholar
McConnell, S.: Software Estimation: Demystifying the Black Art. Redmond, Wa. Microsoft Press (2006)
Google Scholar
McCracken, M., Wolter, N., Snavely, A.: Beyond performance tools: Measuring and modeling productivity in HPC. In: Third International Workshop on Software Engineering for High Performance Computing Applications, SE-HPC 2007, pp. 4–4 (2007)
Google Scholar
Murphy, D., Nash, T., Lawrence Votta, J., Kepner, J.: A System-wide Productivity Figure of Merit. CT Watch Quarterly 2(4B) (2006)
Google Scholar
Newman, M.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)
CrossRef
Google Scholar
Pekurovsky, D.: P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions. SIAM J. Sci. Comput. 34(4), C192–C209 (2012)
MATH
MathSciNet
CrossRef
Google Scholar
Sadowski, C., Shewmaker, A.: The Last Mile: Parallel Programming and Usability. In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research, FoSER 2010, pp. 309–314. ACM, New York (2010)
Google Scholar
Snir, M., Bader, D.A.: A framework for measuring supercomputer productivity. Int. J. High Perform. Comput. Appl. 18(4), 417–432 (2004)
CrossRef
Google Scholar
Sterling, T.: Productivity metrics and models for high performance computing. Int. J. High Perform. Comput. Appl. 18(4), 433–440 (2004)
MathSciNet
CrossRef
Google Scholar
Wang, L., Khan, S.: Review of performance metrics for green data centers: a taxonomy study. J. Supercomputing 63(3), 639–656 (2011)
CrossRef
Google Scholar
Wienke, S., Iliev, H., Hahnfeld, J., an Mey, D., Müller, M.S.: \(aixH(PC)^2\) - Aachen HPC Productivity Calculator (2015). http://www.hpc.rwth-aachen.de/research/tco/
Wienke, S., an Mey, D., Müller, M.S.: Accelerators for technical computing: is it worth the pain? A TCO perspective. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2013. LNCS, vol. 7905, pp. 330–342. Springer, Heidelberg (2013)
CrossRef
Google Scholar
Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)
CrossRef
Google Scholar
Zelkowitz, M., Basili, V., Asgari, S., Hochstein, L., Hollingsworth, J., Nakamura, T.: Measuring productivity on high performance computers. In: IEEE International Symposium on Software Metrics, p. 6 (2005). http://doi.ieeecomputersociety.org/10.1109/METRICS.2005.33
Zelkowitz, M., Hollingsworth, J., Basili, V., Asgari, S., Shull, F., Carver, J., Hochstein, L.: Parallel Programmer Productivity: A Case Study of Novice Parallel Programmers. SC Conference 35 (2005). http://dx.doi.org/10.1109/SC.2005.53