Solar Activity, Climate Change, and Natural Disasters in Mountain Regions


Contemporary science is burdened with contradictory, that is, severely opposed attitudes relating to climate changes issues such as global warming. What is undisputable is that if climate changes are more intensive, changes relating to stands of plants are also more intensive. Forest fires are one of the most drastic factors that influence changes of stands of plants in mountain terrains. The damage caused by forest fires destroying forests varies from case to case, but a significant problem occurs in irretrievable losses of soil because of increased erosion, as well as disturbances in underground water circulation. In contrast to plain terrains, mountains are far more sensitive to such disasters, especially when we consider losses in agricultural soil as well as of wildlife. The fact that a direct connection between any of the climate elements and the initial phase of a fire has not been established so far represents a special challenge to science. A new hypothesis is presented in this chapter, which attempts to link the processes on the sun, that is, charged particles (protons and electrons) as potential causes of forest fires of unknown origin.


Solar activity Forest fires Natural disasters 


  1. Csiszar I, Denis L, Giglio L, Justice OC, Hewson J (2005) Global fire activity from two years of MODIS data. Int J Wildland Fire 14(2):117–130CrossRefGoogle Scholar
  2. FAO (2001) Global forest resources assessment 2000. FAO forestry paper 140. Food and Agriculture Organization, Rome ( [Geo-2-397]
  3. FAO (2002) Forestry country profiles: Iceland. Food and Agriculture Organization, 6 Mar 2002 [Geo-2-417]
  4. Girardin MP, Tardif J, Flannigan MD (2006) Temporal variability in area burned for the province of Ontario, Canada, during the past 200 years inferred from tree rings. J Geophys Res 111:D17108. doi:10.1029/2005JD006815 CrossRefGoogle Scholar
  5. Gomes FPJ, Radovanovic M (2008) Solar activity as a possible cause of large forest fires: a case study. Analysis of the Portuguese forest fires. Sci Total Environ 394:197–205. doi:10.1016/j.scitotenv.2008.01.040 CrossRefGoogle Scholar
  6. Gomes FPJ, Radovanovic M, Ducic V, Milenkovic M, Stevancevic M (2009) Wildfire in Deliblatska pescara (Serbia) – case analysis on July 24th 2007. In: Handbook on solar wind: Effects, dynamics and interactions. Nova science publishers, New YorkGoogle Scholar
  7. Hall LB (2007) Precipitation associated with lightning-ignited wildfires in Arizona and New Mexico. Int J Wildland Fire 16(2):242–254. doi:10.1071/WF06075 CrossRefGoogle Scholar
  8. Komitov B (2005) The sun, climate and their changes in time. Nauka, year XV, issue 1, no. 6, pp 28–39. (
  9. Landscheidt T (2003) New little ice age instead of global warming. Energy Environ 14:327–350. (
  10. Landschieidt T (2000) Solar forcing of Еl Nino and La Nina. European Space Agency Special Publication 463, pp 135–140. (
  11. Malinovic-Milicevic S, Mihailovic DT, Radovanovic M (2014) Reconstruction of the erythemal UV radiation data in Novi Sad (Serbia) using the NEOPLANTA parametric model. Theor Appl Climatol. doi:10.1007/s00704-014-1223-y (in press)Google Scholar
  12. Michaels JP (1998) Long hot year – latest science debunks – global warming hysteria. Policy analysis, no. 329Google Scholar
  13. Milenković M, Radovanović M, Ducić V, Milošević M (2013) Fire protection problems with large forest fires in Deliblatska Peščara (Serbia). J Geogr Inst Jovan Cvijić SASA 63(3):269–278 (special issue: Natural hazards: links between science and practice)CrossRefGoogle Scholar
  14. Nikolić J, Radovanović M, Milijašević D (2010) An astrophysical analysis of weather based on the solar wind parameters. Nucl Technol Radiat Prot 25(3):171–178CrossRefGoogle Scholar
  15. Nikolov N (2006) Global forest resources assessment 2005: Report on fires in the Balkan Region. Forestry Department, Food and Agriculture Organization of the United Nations, Fire management working papers Working paper FM/11/E, Rome (
  16. Palamara RD, Bryant AE (2004) Geomagnetic activity forcing of the Northern Annular Mode via the stratosphere. Ann Geophys 22:725–731CrossRefGoogle Scholar
  17. Радовановић М, Дуцић В, Луковић Ј. (2007) Шумски пожари у Србији – анализа случаја 13–19. марта 2007. године (Forest fires in Serbia – case analysis on 13th–19th march 2007). Зборник радова са научног скупа “Србија и Република Српска у регионалним и глобалним процесима”. Географски факултет Универзитета у Београду, Природно-математички факултет Универзитета у Бањалуци, Београд-Бањалука, стр. 275–280Google Scholar
  18. Radovanović M (2010) Forest fires in Europe from July 22–25, 2009. Arch Biol Sci 62(2):419–424CrossRefGoogle Scholar
  19. Radovanovic M, Gomes JFP (2009) Solar activity and forest fires. Nova Science, New YorkGoogle Scholar
  20. Radovanovic M, Stevancevic M, Strbac D (2003) A contribution to the study of the influence of the energy of solar wind upon the atmospheric processes. J Geogr Inst Jovan Cvijić SASA 52:1–18CrossRefGoogle Scholar
  21. Radovanović M, Vemić M, Popović I (2006) Global climate changes – Antidogmatron. Geographica Panonica, University of Novi Sad, Faculty of Science, Department of Geography, Tourism and Hotel Management, pp 9–13Google Scholar
  22. Radovanović M, Milovanović B, Pavlović M, Radivojević A, Stevančević M (2010) The connection between solar wind charged particles and tornadoes: case analysis. Nucl Technol Radiat Prot 28(1):52–59CrossRefGoogle Scholar
  23. Radovanović M, Vyklyuk Y, Jovanović A, Vuković D, Milenković M, Stevančević M, Matsiuk N (2013) Examination of the corelations between forest fires and solar activity using Hurst index. J Geogr Inst Jovan Cvijić SASA 63(3):23–32 (special issue: natural hazards–links between science and practice)CrossRefGoogle Scholar
  24. Radovanović M, Ducić V, Mukherjee S (2014) Climate changes instead global warming. Therm Sci. doi:10.2298/TSCI140610076R (in press)Google Scholar
  25. Radovanović M, Pavlović T, Stanojević G, Milanović M, Pavlović M, Radivojević A (2015) The influence of solar activities on occurrence of the forest fires in South Europe. Therm Sci. doi:10.2298/TSCI130930036R (in press)Google Scholar
  26. Stevancevic M (2004) Secrets of the solar wind. BelgradeGoogle Scholar
  27. Stevancevic M (2006) Theoretic elements of heliocentric electromagnetic meteorology. BelgradeGoogle Scholar
  28. Stevancevic M, Radovanovic M, Strbac D (2006) Solar wind and the magnetospheric door as factor of atmospheric processes. In: Second international conference “Global Changes and New Challenges of 21st Century,” 22–23 April 2005, Sofia, Bulgaria, pp 88–94Google Scholar
  29. Todorovic N, Stevancevic M, Radovanovic M (2007) Solar activity: possible cause of large forest fires. Гласник за социо-економска географија, кн. 1, стр. 107–115, СкопјеGoogle Scholar
  30. Viegas DX (1998) Forest fire propagation. Philos Trans R Soc Lond A 356:2907–2928CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Geographical Institute Jovan CvijicSerbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations