Skip to main content

Population Balances and Moments Transport Equations for Disperse Two-Phase Flows

  • Chapter
  • First Online:
  • 1954 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 114))

Abstract

In this chapter, a link is derived between the interfacial area transport equation derived in Chap. 4 and the population balance equation for disperse flows. The particles birth and death phenomena are formalized. These phenomena are mechanical ones (coalescence and breakup) or are due to phase change (nucleation and collapse). Transport equations are derived for the moments of the particle size distribution function. These moments equations being unclosed, we briefly review two quadrature methods of moments to close and solve the set of equations. A completely different method based on the discretization of the bubble size distribution function is also presented in the context of isothermal bubbly flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Carrica PM, Drew D, Bonetto F, Lahey RT Jr (1999) A polydisperse model for bubbly two-phase flow around a surface ship. Int J Multiphase Flow 25:257–305

    Article  Google Scholar 

  • Chen P, Dudukovic MP, Sanyal J (2005) Three-dimensional simulation of bubble column flows with bubble coalescence and break-up. AIChE J 51(3):696–712

    Article  Google Scholar 

  • Delhaye JM (2001) Some issues related to the modeling of interfacial areas in gas-liquid flows, part I: the conceptual issues. C R Acad Sci Paris t. 329, Série IIb:397–410

    Google Scholar 

  • Gimbun J, Nagy ZK, Rielly CD (2009) Simultaneous quadrature method of moments for the solution of population balance equations, using a differential algebraic equation framework. Ind Eng Chem Res 48:7798–7812

    Article  Google Scholar 

  • Guichard R (2013) Dynamique d’un aérosol de nanoparticules—modélisation de la coagulation et du transport d’agrégats. Thèse de Doctorat, Université de Lorraine

    Google Scholar 

  • Hulburt HM, Katz S (1964) Some problems in particle technology: a statistical mechanical formulation. Chem Eng Sci 19:555–574

    Article  Google Scholar 

  • Jones IP, Guilbert PW, Owens MP, Hamill IS, Montavon CA, Penrose JMT, Prast B (2003) The use of coupled solvers for complex multi-phase and reacting flows. In: 3rd international conference on CFD in the minerals and process industries, CSIRO, Melbourne, Australia, 10–12 December

    Google Scholar 

  • Kamp AM, Chesters AK, Colin C, Fabre J (2001) Bubble coalescence in turbulent flows: a mechanistic model for turbulence induced coalescence applied to microgravity bubbly pipe flow. Int J Multiphase Flow 27:1363–1396

    Article  MATH  Google Scholar 

  • Kocamustafaogullari G, Ishii M (1995) Foundation of the interfacial area transport equation and its closure relations. Int J Heat Mass Transf 38(3):481–493

    Article  MATH  Google Scholar 

  • Krepper E, Lucas D, Shi JM, Prasser HM (2006) Simulations of FZR adiabatic air-water data with CFX-10. Nuresim European project, D.2.2.3.1

    Google Scholar 

  • Lance M (1986) Etude de la turbulence dans les écoulements diphasiques dispersés. Thèse d’Etat, Université Claude Bernard, Lyon

    Google Scholar 

  • Lhuillier D (1992) Ensemble averaging in slightly non uniform suspensions. Eur J Mech B/Fluids 11(6):649–661

    MathSciNet  MATH  Google Scholar 

  • Lhuillier D, Morel C, Delhaye JM (2000) Bilan d’aire interfaciale dans un mélange diphasique: approche locale vs approche particulaire. C R Acad Sci Paris t. 328, Série IIb:143–149

    Google Scholar 

  • Lucas D, Krepper E, Prasser HM (2001) Modeling of radial gas fraction profiles for bubble flow in vertical pipes. In: 9th international conference on nuclear engineering (ICONE-9), Nice, France, Avril 2001

    Google Scholar 

  • Lucas D, Krepper E (2007) CFD models for polydispersed bubbly flows. Tech. report FZD-486

    Google Scholar 

  • Marchisio DL, Vigil RD, Fox RO (2003) Quadrature method of moments for aggregation-breakage processes. J Colloid Interface Sci 258:322–334

    Article  Google Scholar 

  • Marchisio DL, Fox RO (2005) Solving of population balance equations using the direct quadrature method of moments. Aerosol Sci 36:43–73

    Article  Google Scholar 

  • Marchisio DL, Fox RO (2007) Multiphase reacting flows: modelling and simulation. CISM courses and lectures no. 492. International Center for Mechanical Sciences, Springer, Wien, New-York

    Google Scholar 

  • Marchisio DL, Fox RO (2013) Computational models for polydisperse particulate and multiphase systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Martineau C (2013) Modélisation stochastique du dépôt de particules colloïdales transportées par des écoulements turbulent isothermes et non isothermes. Thèse de Doctorat, Université de Lorraine

    Google Scholar 

  • McGraw R (1997) Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci Technol 27(2):255–265

    Article  Google Scholar 

  • Minier JP, Peirano E (2001) The PDF approach to turbulent polydispersed two-phase flows. Phys Rep 352:1–214

    Article  MathSciNet  MATH  Google Scholar 

  • Morel C, Ruyer P, Seiler N, Laviéville J (2010) Comparison of several models for multi-size bubbly flows on an adiabatic experiment. Int J Multiphase Flow 36:25–39

    Article  Google Scholar 

  • Oesterlé B (2006) Ecoulements multiphasiques. Hermès, Lavoisier

    Google Scholar 

  • Ramkrishna D (2000) Population balances: theory and applications to particulate systems in engineering. Academic Press, Waltham

    Google Scholar 

  • Riou X (2003) Contribution à la modélisation de l’aire interfaciale en écoulement gaz-liquide en conduite. Thèse de Doctorat, Institut National Polytechnique de Toulouse

    Google Scholar 

  • Ruyer P, Seiler N, Beyer M, Weiss FP (2007) A bubble size distribution model for the numerical simulation of bubbly flows. In: 6th international conference multiphase flow, ICMF2007, Leipzig, Germany, July 9–13

    Google Scholar 

  • Ruyer P, Seiler N (2009) Advanced models for polydispersion in size in boiling flows. La Houille Blanche, Revue Internationale de l’Eau, no. 4, pp. 65–71. ISSN 0018-6368

    Google Scholar 

  • Sha Z, Laari A, Turunen I (2006) Multi-phase-multi-size-group model for the inclusion of population balances into the CFD simulation of gas-liquid bubbly flows. Chem Eng Technol 29(5)

    Google Scholar 

  • Tomiyama A, Shimada N (1998) Numerical simulations of bubble columns using a 3D multi-fluid model. In: 3rd international conference multiphase flow, ICMF’98, Lyon, France, 8–12 June

    Google Scholar 

  • Yu M, Lin J (2009) Taylor expansion moment method for agglomerate coagulation due to Brownian motion in the entire size regime. Aerosol Sci 40:549–562

    Article  MathSciNet  Google Scholar 

  • Zaepffel D (2011) Modélisation des écoulements bouillants à bulles polydispersées. Thèse de Doctorat, Institut National Polytechnique Grenoble

    Google Scholar 

  • Zaepffel D, Morel C, Lhuillier D (2012) A multi-size model for boiling bubbly flows. Multiphase Science & Technology 24(2):105–179

    Article  Google Scholar 

  • Zhang DZ, Prosperetti A (1994) Ensemble phase-averaged equations for bubbly flows. Phys Fluids 6(9):2956–2970

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Morel .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morel, C. (2015). Population Balances and Moments Transport Equations for Disperse Two-Phase Flows. In: Mathematical Modeling of Disperse Two-Phase Flows. Fluid Mechanics and Its Applications, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-20104-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20104-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20103-0

  • Online ISBN: 978-3-319-20104-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics