Skip to main content

SH3 Domains as Suitable Models to Study Amyloid Aggregation

  • Chapter
  • First Online:
SH Domains

Abstract

Protein aggregation and amyloid fibril formation are related to a variety of neurodegenerative diseases for which no effective therapies or prevention methods exists yet. The study of well-characterized model proteins, even unrelated to disease, is a potent approach to investigate amyloid fibrils and in fact many of the advances in this intricate problem have been achieved from the study of model systems. In this chapter, we review the use of SH3 domains in the study of amyloid aggregation. We especially focus on the interest of combining biophysical techniques to quantitatively describe the kinetics of the different steps leading to fibrillation. Indeed, SH3 domains have been studied not only to elucidate the structural determinants of amyloid fibrils but also to unveil the thermodynamic and kinetic determinants of their formation precursors. Such contributions have given insight into the forces driving amyloid aggregation and may be of useful interest in future development of novel therapeutic or preventive strategies for neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Spc-SH3:

Src-homology region 3 domain of chicken α-spectrin

PI3-SH3:

SH3 domain of α-subunit of bovine phosphatidylinositol -3-kinase

NMR:

Nuclear magnetic resonance

TEM:

Transmission electron microscopy

AFM:

Atomic force microscopy

References

  • Bader, R., Bamford, R., Zurdo, J., Luisi, B. F., & Dobson, C. M. (2006). Probing the mechanism of amyloidogenesis through a tandem repeat of the PI3-SH3 domain suggests a generic model for protein aggregation and fibril formation. Journal of Molecular Biology, 356, 189–208.

    Article  CAS  PubMed  Google Scholar 

  • Bayro, M. J., Maly, T., Birkett, N. R., Macphee, C. E., Dobson, C. M., & Griffin, R. G. (2010). High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils: backbone conformation and implications for protofilament assembly and structure. Biochemistry, 49, 7474–7484.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bayro, M. J., Debelouchina, G. T., Eddy, M. T., Birkett, N. R., MacPhee, C. E., Rosay, M., et al. (2011). Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. Journal of the American Chemical Society, 133, 13967–13974.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bolognesi, B., Kumita, J. R., Barros, T. P., Esbjorner, E. K., Luheshi, L. M., Crowther, D. C., et al. (2010). ANS binding reveals common features of cytotoxic amyloid species. ACS Chemical Biology, 5, 735–740.

    Article  CAS  PubMed  Google Scholar 

  • Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., et al. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature, 416, 507–511.

    Article  CAS  PubMed  Google Scholar 

  • Camara-Artigas, A., Martin-Garcia, J. M., Morel, B., Ruiz-Sanz, J., & Luque, I. (2009). Intertwined dimeric structure for the SH3 domain of the c-Src tyrosine kinase induced by polyethylene glycol binding. FEBS Letters, 583, 749–753.

    Article  CAS  PubMed  Google Scholar 

  • Carulla, N., Caddy, G. L., Hall, D. R., Zurdo, J., Gairi, M., Feliz, M., et al. (2005). Molecular recycling within amyloid fibrils. Nature, 436, 554–558.

    Article  CAS  PubMed  Google Scholar 

  • Carulla, N., Zhou, M., Arimon, M., Gairi, M., Giralt, E., Robinson, C. V., & Dobson, C. M. (2009). Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 106, 7828–7833.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casares, S., Sadqi, M., Lopez-Mayorga, O., Martinez, J. C., & Conejero-Lara, F. (2003). Structural cooperativity in the SH3 domain studied by site-directed mutagenesis and amide hydrogen exchange. FEBS Letters, 539, 125–130.

    Article  CAS  PubMed  Google Scholar 

  • Casares, S., Sadqi, M., Lopez-Mayorga, O., Conejero-Lara, F., & van Nuland, N. A. (2004). Detection and characterization of partially unfolded oligomers of the SH3 domain of alpha-spectrin. Biophysical Journal, 86, 2403–2413.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casares, S., López-Mayorga, O., Vega, M. C., Cámara-Artigas, A., & Conejero-Lara, F. (2007). Cooperative propagation of local stability changes from low-stability and high-stability regions in a SH3 domain. Proteins: Structure. Function, and Bioinformatics, 67, 531–547.

    Article  CAS  Google Scholar 

  • Chiti, F., & Dobson, C. M. (2006). Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75, 333–366.

    Article  CAS  PubMed  Google Scholar 

  • De Lano, W. L. (2002). The PyMOL Molecular Graphics System. San Carlos: DeLano Scientific.

    Google Scholar 

  • Ding, F., Dokholyan, N. V., Buldyrev, S. V., Stanley, H. E., & Shakhnovich, E. I. (2002). Molecular dynamics simulation of the SH3 domain aggregation suggests a generic amyloidogenesis mechanism. Journal of Molecular Biology, 324, 851–857.

    Article  CAS  PubMed  Google Scholar 

  • Dobson, C. M. (1999). Protein misfolding, evolution and disease. Trends in Biochemical Sciences, 24, 329–332.

    Article  CAS  PubMed  Google Scholar 

  • Dobson, C. M. (2004). Principles of protein folding, misfolding and aggregation. Seminars in Cell & Developmental Biology, 15, 3–16.

    Article  CAS  Google Scholar 

  • Farrow, N. A., Zhang, O. W., Formankay, J. D., & Kay, L. E. (1995). Comparison of the backbone dynamics of a folded and an unfolded SH3 domain existing in equilibrium in aqueous buffer. Biochemistry, 34, 868–878.

    Article  CAS  PubMed  Google Scholar 

  • Ferrone, F. (1999). Analysis of protein aggregation kinetics. Methods in Enzymology, 309, 256–274.

    Article  CAS  PubMed  Google Scholar 

  • Fersht, A. R., Matouschek, A., Sancho, J., Serrano, L., & Vuilleumier, S. (1992). Pathway of protein folding. Faraday Discuss, 93, 183–193.

    Google Scholar 

  • Filimonov, V. V., Azuaga, A. I., Viguera, A. R., Serrano, L., & Mateo, P. L. (1999). A thermodynamic analysis of a family of small globular proteins: SH3 domains. Biophysical Chemistry, 77, 195–208.

    Article  CAS  PubMed  Google Scholar 

  • Grantcharova, V. P., & Baker, D. (1997). Folding dynamics of the src SH3 domain. Biochemistry, 36, 15685–15692.

    Article  CAS  PubMed  Google Scholar 

  • Grantcharova, V. P., Riddle, D. S., & Baker, D. (2000). Long-range order in the src SH3 folding transition state. Proceedings of the National Academy of Sciences of the United States of America, 97, 7084–7089.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guijarro, J. I., Morton, C. J., Plaxco, K. W., Campbell, I. D., & Dobson, C. M. (1998a). Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy. Journal of Molecular Biology, 276, 657–667.

    Article  CAS  PubMed  Google Scholar 

  • Guijarro, J. I., Sunde, M., Jones, J. A., Campbell, I. D., & Dobson, C. M. (1998b). Amyloid fibril formation by an SH3 domain. Proceedings of the National Academy of Sciences of the United States of America, 95, 4224–4228.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews Molecular Cell Biology, 8, 101–112.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez, J. L., Guijarro, J. I., Orlova, E., Zurdo, J., Dobson, C. M., Sunde, M., & Saibil, H. R. (1999). Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. The EMBO Journal, 18, 815–821.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kishan, K. V., Newcomer, M. E., Rhodes, T. H., & Guilliot, S. D. (2001). Effect of pH and salt bridges on structural assembly: molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain. Protein Science, 10, 1046–1055.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klimov, D. K., & Thirumalai, D. (2002). Stiffness of the distal loop restricts the structural heterogeneity of the transition state ensemble in SH3 domains. Journal of Molecular Biology, 317, 721–737.

    Article  CAS  PubMed  Google Scholar 

  • Kortemme, T., Kelly, M. J. S., Kay, L. E., Forman-Kay, J., & Serrano, L. (2000). Similarities between the spectrin SH3 domain denatured state and its folding transition state. Journal of Molecular Biology, 297, 1217–1229.

    Article  CAS  PubMed  Google Scholar 

  • Korzhnev, D. M., Salvatella, X., Vendruscolo, M., Di Nardo, A. A., Davidson, A. R., Dobson, C. M., & Kay, L. E. (2004). Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature, 430, 586–590.

    Article  CAS  PubMed  Google Scholar 

  • Krobath, H., Estacio, S. G., Faisca, P. F., & Shakhnovich, E. I. (2012). Identification of a conserved aggregation-prone intermediate state in the folding pathways of Spc-SH3 amyloidogenic variants. Journal of Molecular Biology, 422, 705–722.

    Article  CAS  PubMed  Google Scholar 

  • Lapidus, D., Duka, V., Stonkus, V., Czaplewski, C., Liwo, A., Ventura, S., & Liepina, I. (2012). Multiple beta-sheet molecular dynamics of amyloid formation from two ABl-SH3 domain peptides. Biopolymers, 98, 557–566.

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen, K., Paci, E., Serrano, L., Dobson, C. M., & Vendruscolo, M. (2003). Calculation of mutational free energy changes in transition states for protein folding. Biophysical Journal, 85, 1207–1214.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindorff-Larsen, K., Vendruscolo, M., Paci, E., & Dobson, C. M. (2004). Transition states for protein folding have native topologies despite high structural variability. Nature Structural & Molecular Biology, 11, 443–449.

    Article  CAS  Google Scholar 

  • Martinez, J. C., Pisabarro, M. T., & Serrano, L. (1998). Obligatory steps in protein folding and the conformational diversity of the transition state. Natural Structural Biology, 5, 721–729.

    Article  CAS  Google Scholar 

  • Martinez, J. C., & Serrano, L. (1999). The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved. Natural Structural Biology, 6, 1010–1016.

    Article  CAS  Google Scholar 

  • Martin-Garcia, J. M., Luque, I., Mateo, P. L., Ruiz-Sanz, J., & Camara-Artigas, A. (2007). Crystallographic structure of the SH3 domain of the human c-Yes tyrosine kinase: loop flexibility and amyloid aggregation. FEBS Letters, 581, 1701–1706.

    Article  CAS  PubMed  Google Scholar 

  • Matouschek, A., Kellis, J. T, Jr, Serrano, L., Bycroft, M., & Fersht, A. R. (1990). Transient folding intermediates characterized by protein engineering. Nature, 346, 440–445.

    Article  CAS  PubMed  Google Scholar 

  • Mok, Y. K., Kay, C. M., Kay, L. E., & Forman-Kay, J. (2003). NOE data demonstrating a compact unfolded state for an SH3 domain under non-denaturing conditions. Journal of Molecular Biology, 329, 185–187.

    Article  Google Scholar 

  • Morel, B., Casares, S., & Conejero-Lara, F. (2006). A single mutation induces amyloid aggregation in the alpha-spectrin SH3 domain: analysis of the early stages of fibril formation. Journal of Molecular Biology, 356, 453–468.

    Article  CAS  PubMed  Google Scholar 

  • Morel, B., Varela, L., Azuaga, A. I., & Conejero-Lara, F. (2010). Environmental conditions affect the kinetics of nucleation of amyloid fibrils and determine their morphology. Biophysical Journal, 99, 3801–3810.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neudecker, P., Zarrine-Afsar, A., Davidson, A. R., & Kay, L. E. (2007). Phi-value analysis of a three-state protein folding pathway by NMR relaxation dispersion spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 104, 15717–15722.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neudecker, P., Robustelli, P., Cavalli, A., Walsh, P., Lundstrom, P., Zarrine-Afsar, A., et al. (2012). Structure of an intermediate state in protein folding and aggregation. Science, 336, 362–366.

    Article  CAS  PubMed  Google Scholar 

  • Northey, J. G. B., Di Nardo, A. A., & Davidson, A. R. (2002a). Hydrophobic core packing in the SH3 domain folding transition state. Natural Structural Biology, 9, 126–130.

    Article  CAS  Google Scholar 

  • Northey, J. G. B., Maxwell, K. L., & Davidson, A. R. (2002b). Protein folding kinetics beyond the phi value: Using multiple amino acid substitutions to investigate the structure of the SH3 domain folding transition state. Journal of Molecular Biology, 320, 389–402.

    Article  CAS  PubMed  Google Scholar 

  • Ollerenshaw, J. E., Kaya, H., Chan, H. S., & Kay, L. E. (2004). Sparsely populated folding intermediates of the Fyn SH3 domain: Matching native-centric essential dynamics and experiment. Proceedings of the National Academy of Sciences of the United States of America, 101, 14748–14753.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orte, A., Birkett, N. R., Clarke, R. W., Devlin, G. L., Dobson, C. M., & Klenerman, D. (2008). Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 105, 14424–14429.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paredes, J. M., Casares, S., Ruedas-Rama, M. J., Fernandez, E., Castello, F., Varela, L., & Orte, A. (2012). Early amyloidogenic oligomerization studied through fluorescence lifetime correlation spectroscopy. International Journal of Molecular Sciences, 13, 9400–9418.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Periole, X., Vendruscolo, M., & Mark, A. E. (2007). Molecular dynamics simulations from putative transition states of alpha-spectrin SH3 domain. Proteins: Structure: Function, and Bioinformatics, 69, 536–550.

    Article  CAS  Google Scholar 

  • Plaxco, K. W., Guijarro, J. I., Morton, C. J., Pitkeathly, M., Campbell, I. D., & Dobson, C. M. (1998). The folding kinetics and thermodynamics of the Fyn-SH3 domain. Biochemistry, 37, 2529–2537.

    Article  CAS  PubMed  Google Scholar 

  • Riddle, D. S., Grantcharova, V. P., Santiago, J. V., Alm, E., Ruczinski, I., & Baker, D. (1999). Experiment and theory highlight role of native state topology in SH3 folding. Natural Structural Biology, 6, 1016–1024.

    Article  CAS  Google Scholar 

  • Ruzafa, D., Morel, B., Varela, L., Azuaga, A. I., & Conejero-Lara, F. (2012). Characterization of oligomers of heterogeneous size as precursors of amyloid fibril nucleation of an SH3 domain: an experimental kinetics study. PLoS ONE, 7, e49690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruzafa, D., Conejero-Lara, F., & Morel, B. (2013). Modulation of the stability of amyloidogenic precursors by anion binding strongly influences the rate of amyloid nucleation. Physical Chemistry Chemical Physics, 15, 15508–15517.

    Article  CAS  PubMed  Google Scholar 

  • Ruzafa, D., Varela, L., Azuaga, A. I., Conejero-Lara, F., & Morel, B. (2014). Mapping the structure of amyloid nucleation precursors by protein engineering kinetic analysis. Physical Chemistry Chemical Physics, 16, 2989–3000.

    Article  CAS  PubMed  Google Scholar 

  • Sadqi, M., Casares, S., Abril, M. A., Lopez-Mayorga, O., Conejero-Lara, F., & Freire, E. (1999). The native state conformational ensemble of the SH3 domain from alpha-spectrin. Biochemistry, 38, 8899–8906.

    Article  CAS  PubMed  Google Scholar 

  • Sadqi, M., Casares, S., Lopez-Mayorga, O., & Conejero-Lara, F. (2002a). The temperature dependence of the hydrogen exchange in the SH3 domain of [alpha]-spectrin. FEBS Letters, 527, 86–90.

    Article  CAS  PubMed  Google Scholar 

  • Sadqi, M., Casares, S., Lopez-Mayorga, O., Martinez, J. C., & Conejero-Lara, F. (2002b). pH dependence of the hydrogen exchange in the SH3 domain of alpha-spectrin. FEBS Letters, 514, 295–299.

    Article  CAS  PubMed  Google Scholar 

  • Serio, T. R., Cashikar, A. G., Kowal, A. S., Sawicki, G. J., Moslehi, J. J., Serpell, L., et al. (2000). Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science, 289, 1317–1321.

    Article  CAS  PubMed  Google Scholar 

  • Shea, J. E., Onuchic, J. N., & Brooks, C. L, 3rd. (2002). Probing the folding free energy landscape of the Src-SH3 protein domain. Proceedings of the National Academy of Sciences of the United States of America, 99, 16064–16068.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stefani, M., & Dobson, C. M. (2003). Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. Journal of Molecular Medicine, 81, 678–699.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, J., Levitt, M., & Baker, D. (1999). Hierarchy of structure loss in MD simulations of src SH3 domain unfolding. Journal of Molecular Biology, 291, 215–225.

    Article  CAS  PubMed  Google Scholar 

  • Varela, L., Morel, B., Azuaga, A. I., & Conejero-Lara, F. (2009). A single mutation in an SH3 domain increases amyloid aggregation by accelerating nucleation, but not by destabilizing thermodynamically the native state. FEBS Letters, 583, 801–806.

    Article  CAS  PubMed  Google Scholar 

  • Vega, M. C., Martinez, J. C., Serrano, L., Pisabarro, M. T., Viguera, A. R., Filimonov, V. V., & Mateo, P. L. (2000). Thermodynamic and structural characterization of Asn and Ala residues in the disallowed II’ region of the Ramachandran plot. Protein Science, 9, 2322–2328.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ventura, S., Lacroix, E., & Serrano, L. (2002a). Insights into the Origin of the Tendency of the PI3-SH3 Domain to form Amyloid Fibrils. Journal of Molecular Biology, 322, 1147–1158.

    Article  CAS  PubMed  Google Scholar 

  • Ventura, S., Vega, M. C., Lacroix, E., Angrand, I., Spagnolo, L., & Serrano, L. (2002b). Conformational strain in the hydrophobic core and its implications for protein folding and design. Natural Structural Biology, 9, 485–493.

    Article  CAS  Google Scholar 

  • Ventura, S., Zurdo, J., Narayanan, S., Parreno, M., Mangues, R., Reif, B., et al. (2004). Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proceedings of the National Academy of Sciences of the United States of America, 101, 7258–7263.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Viguera, A. R., Martinez, J. C., Filimonov, V. V., Mateo, P. L., & Serrano, L. (1994). Thermodynamic and kinetic analysis of the SH3 domain of spectrin shows a two-state folding transition. Biochemistry, 33, 2142–2150.

    Article  CAS  PubMed  Google Scholar 

  • Wani, A. H., & Udgaonkar, J. B. (2009a). Native state dynamics drive the unfolding of the SH3 domain of PI3 kinase at high denaturant concentration. Proceedings of the National Academy of Sciences of the United States of America, 106, 20711–20716.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wani, A. H., & Udgaonkar, J. B. (2009b). Revealing a concealed intermediate that forms after the rate-limiting step of refolding of the SH3 domain of PI3 kinase. Journal of Molecular Biology, 387, 348–362.

    Article  CAS  PubMed  Google Scholar 

  • Watson, J. S., Matsuyama, S. S., Dirham, P. M., Liston, E. H., La Rue, A., & Jarvik, L. F. (1987). Relatives descriptions of changes in symptoms of dementia of the Alzheimer type: a comparison of retrospective and concurrent ratings. Alzheimer Disease and Associated Disorders, 1, 98–102.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, R. (2006). Kinetics and thermodynamics of amyloid fibril assembly. Accounts of Chemical Research, 39, 671–679.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S. C., Cho, S. S., Levy, Y., Cheung, M. S., Levine, H., Wolynes, P. G., & Onuchic, J. N. (2004). Domain swapping is a consequence of minimal frustration. Proceedings of the National Academy of Sciences of the United States of America, 101, 13786–13791.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zurdo, J., Guijarro, J. I., Jimenez, J. L., Saibil, H. R., & Dobson, C. M. (2001). Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. Journal of Molecular Biology, 311, 325–340.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Morel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morel, B., Ruzafa, D., Conejero-Lara, F. (2015). SH3 Domains as Suitable Models to Study Amyloid Aggregation. In: Kurochkina, N. (eds) SH Domains. Springer, Cham. https://doi.org/10.1007/978-3-319-20098-9_1

Download citation

Publish with us

Policies and ethics