Skip to main content

Current Practices in Epilepsy Monitoring; Future Prospects and the ARMOR Challenge

  • Chapter
Cyberphysical Systems for Epilepsy and Related Brain Disorders

Abstract

Methods and hardware for EEG recording are advancing rapidly with novel solutions approaching the performance of EEG recordings with conventional electrodes. The prime mover of the new solutions is the electronic game industry. Although there are some common desirable characteristics needed by EEG measurements in both the game industry and for home monitoring of epilepsy there are differences too, primarily in the demands for high signal quality, and this is where the new solutions are naturally still insufficient for clinical applications. Advances in the signal analysis are more mature with the use of tomographic estimates of activity from MEG but also from EEG data opening new ways for advancing the capability and usefulness of home monitoring for epilepsy management. The combination of the advances in EEG hardware and data analysis together with genetic and anatomical information for individual subjects coupled to powerful data mining techniques for “big data” is likely to revolutionize the monitoring and management of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ioannides AA, Kostopoulos GK (2008) Real-time tomography from magnetoencephalography (MEG)? Experimental and theoretical challenges, possible physiological basis and evidence from the analysis of real data. Int J Bioelectromagnetism 10:37–51

    Google Scholar 

  2. Tallgren P, Vanhatalo S, Kaila K, Voipio J (2005) Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol 116:799–806

    Article  Google Scholar 

  3. Leleux P, Badier J-M, Rivnay J, Benar C, Herve T, Chauvel P, Malliaras GG (2014) Conducting polymer electrodes for electroencephalography. Adv Healthc Mater 3:490–493

    Article  Google Scholar 

  4. Casson AJ, Smith S, Duncan JS, Rodriguez-Villegas E (2008) Wearable EEG: what is it, why is it needed and what does it entail? Eng Med Biol Soc. 30th Annual International Conference of the IEEE, p 5867–5870

    Google Scholar 

  5. Arnin J, Anopas D, Horapong M, Triponyuwasi P, Yamsa-Ard T, Iampetch S, Wongsawat Y (2013) Wireless-based portable EEG-EOG monitoring for real time drowsiness detection. Eng Med Biol Soc. 35th Annual International Conference of the IEEE, p 4977–4980

    Google Scholar 

  6. Lopez-Gordo MA, Sanchez-Morillo D, Valle FP (2014) Dry EEG electrodes. Sensors 14:12847–12870

    Article  Google Scholar 

  7. Hoffmann KP, Ruff R (2007) Flexible dry surface-electrodes for ECG long-term monitoring. Eng Med Biol Soc. 29th Annual International Conference of the IEEE, p 5739–5742

    Google Scholar 

  8. Chang CW, Ko LW, Lin FC, Su TP, Jung TP, Lin CT, Chiou JC (2010) Drowsiness monitoring with EEG-based MEMS biosensing technologies. GeroPsych 23:107

    Article  Google Scholar 

  9. Sullivan TJ, Deiss SR, Jung TP, Cauwenberghs G (2008) A brain-machine interface using dry-contact, low-noise EEG sensors. IEEE International Symposium on Circuits and Systems, p 1986–1989

    Google Scholar 

  10. Lin YP, Wang Y, Wei CS, Jung TP (2014) Assessing the quality of steady-state visual-evoked potentials for moving humans using a mobile electroencephalogram headset. Front Hum Neurosci 8:182

    Article  Google Scholar 

  11. Sellers EW, Turner P, Sarnacki WA, McManus T, Vaughan TM, Matthews R (2009) A novel dry electrode for brain-computer interface. In: Human-computer interaction. Novel Interaction Methods and Techniques. Springer, Berlin, pp 623–631

    Google Scholar 

  12. Toyama S, Takano K, Kansaku K (2012) A non-adhesive solid-gel electrode for a non-invasive brain-machine interface. Front Neurol 3:114

    Article  Google Scholar 

  13. Park J, Xu L, Sridhar V, Chi M, Cauwenberghs G (2011) Wireless dry EEG for drowsiness detection. In: 33rd annual international conference of the IEEE EMBS, Boston, MA, USA, August 30–September 3, 2011

    Google Scholar 

  14. Guger C, Krausz G, Allison BZ, Edlinger G (2012) Comparison of dry and gel based electrodes for P300 brain-computer interfaces. Front Neurosci 6:60

    Google Scholar 

  15. Grozea C, Voinescu CD, Fazli S (2011) Bristle-sensors low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J Neural Eng 8:025008

    Article  Google Scholar 

  16. Chen YH, Op de Beeck M, Vanderheyden L, Vanstreels K, Vandormael H, Van Hoof C (2014) Soft conductive polymer dry electrodes for high-quality and comfortable ECG/EEG measurements. Adv Sci Technol 96:102–107

    Article  Google Scholar 

  17. Huang Y, Wu C, Wong A, Lin B (2015) Novel active comb-shaped dry electrode for EEG measurement in hairy site. IEEE Trans Biomed Eng 62:256–263

    Article  Google Scholar 

  18. Zander TO, Lehne M, Ihme K, Jatzev S, Correia J, Kothe C, Picht B, Nijboer F (2011) A dry EEG-system for scientific research and brain-computer interfaces. Front Neurosci 5:53

    Article  Google Scholar 

  19. Slater JD, Kalamangalam GP, Hope O (2012) Quality assessment of electroencephalography obtained from a “dry electrode” system. J Neurosci Methods 208:134–137

    Article  Google Scholar 

  20. Fiedler P, Haueisen J, Jannek D, Griebel S, Zentner L, Vaz F, Fonseca C (2014) Comparison of three types of dry electrodes for electroencephalography. ACTA IMEKOl 3(3):33–37

    Google Scholar 

  21. Gargiulo GD, Bifulco P, Cesarelli M, Fratini A, Romano M (2014) Problems in assessment of novel biopotential front-end with dry electrode: a brief review. Machines 2:87–98

    Article  Google Scholar 

  22. Sullivan D, Mizuseki K, Sorgi A, Buzsaki G (2014) Comparison of sleep spindles and theta oscillations in the hippocampus. J Neurosci 34(2):662–674

    Article  Google Scholar 

  23. Chi YM (2011) Non-contact biopotential sensing. PhD thesis, UC San Diego electronic theses and dissertations. Permalink: https://escholarship.org/uc/item/4z4898fb. Local identifier: b7185097

  24. Chi YM, Cauwenberghs G (2010) Wireless non-contact EEG/ECG electrodes for body sensor networks. 2010 IEEE international conference on body sensor networks, vol 52, pp 297–301

    Google Scholar 

  25. Kitoko V (2014) Improvement of EEG signal recording with non-contact electrodes in an headset system. Int J Biomed Eng Sci 1(3)

    Google Scholar 

  26. Lopez A, Richardson PC (1969) Capacitive electrocardiographic and bioelectric electrodes. IEEE Trans Biomed Eng 16(1):99

    Article  Google Scholar 

  27. Valchinov ES, Pallikarakis NE (2004) An active electrode for biopotential recording from small localized bio-sources. Biomed Eng Online 3:25

    Article  Google Scholar 

  28. Gramfort A, Papadopoulo T, Olivi E, Clerc M (2010) OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed Eng Online 9:45

    Article  Google Scholar 

  29. Gramfort A, Papadopoulo T, Olivi E, Clerc M (2011) Forward field computation with OpenMEEG. Comput Intell Neurosci 2011:923703

    Google Scholar 

  30. Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo T (2005) A common formalism for the integral formulations of the forward EEG problem. IEEE Trans Med Imaging 24:12–28

    Article  Google Scholar 

  31. Ioannides AA, Bolton JPR, Clarke CJS (1990) Continuous probabilistic solutions to the biomagnetic inverse problem. Inverse Probl 6:523–542

    Article  MATH  Google Scholar 

  32. Taylor JG, Ioannides AA, Mueller-Gaertner HW (1999) Mathematical analysis of lead field expansions. IEEE Trans Med Imaging 18:151–163

    Article  Google Scholar 

  33. Ioannides AA, Poghosyan V, Liu L, Saridis GA, Tamietto M, Op de Beeck M, De Tiège X, Weiskrantz L, de Gelder B (2012) Spatiotemporal profiles of visual processing with and without primary visual cortex. Neuroimage 63:1464–1477

    Article  Google Scholar 

  34. Ioannides AA, Fenwick PBC, Liu LC (2005) Widely distributed magnetoencephalography spikes related to the planning and execution of human saccades. J Neurosci 25:7950–7967

    Article  Google Scholar 

  35. Poghosyan V, Ioannides AA (2007) Precise mapping of early visual responses in space and time. Neuroimage 35:759–770

    Article  Google Scholar 

  36. Poghosyan V, Ioannides AA (2008) Attention modulates earliest responses in the primary auditory and visual cortices. Neuron 58:802–813

    Article  Google Scholar 

  37. Ioannides AA, Poghosyan V (2012) Spatiotemporal dynamics of early spatial and category-specific attentional modulations. Neuroimage 60:1638–1651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Ioannides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ioannides, A.A., Poghosyan, V., Kostopoulos, G.K. (2015). Current Practices in Epilepsy Monitoring; Future Prospects and the ARMOR Challenge. In: Voros, N., Antonopoulos, C. (eds) Cyberphysical Systems for Epilepsy and Related Brain Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-20049-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20049-1_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20048-4

  • Online ISBN: 978-3-319-20049-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics