Advertisement

Analytical Solutions for Geodesic Equation in Black Hole Spacetimes

  • Claus LämmerzahlEmail author
  • Eva Hackmann
Chapter
Part of the Springer Proceedings in Physics book series (SPPHY, volume 170)

Abstract

We review the analytical solution methods for the geodesic equation in Kerr-Newman-Taub-NUT-de Sitter spacetimes and its subclasses in terms of elliptic and hyperelliptic functions. A short guide to corresponding literature for general timelike and lightlike geodesic motion is also presented.

Notes

Acknowledgments

We thank the German Research Foundation DFG for financial support within the Research Training Group 1620 “Models of Gravity”.

References

  1. 1.
    M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover Publications Inc., New York, 1965)Google Scholar
  2. 2.
    V.M. Buchstaber, V.Z. Enolskii, D.V. Leykin, Hyperelliptic Kleinian Functions and Applications. Reviews in Mathematics and Mathematical Physics 10 (Gordon and Breach, 1997)Google Scholar
  3. 3.
    A. Čadež, C. Fanton, M. Calvani, New Astronomy 3, 647 (1998)CrossRefADSGoogle Scholar
  4. 4.
    B. Carter, Phys. Rev. 174, 1559 (1968)CrossRefADSzbMATHGoogle Scholar
  5. 5.
    C. Darwin, Proc. R. Soc. London A 249, 180 (1959)MathSciNetCrossRefADSzbMATHGoogle Scholar
  6. 6.
    C. Darwin, Proc. R. Soc. London A 263, 39 (1961)MathSciNetCrossRefADSzbMATHGoogle Scholar
  7. 7.
    R. Fujita, W. Hikida, Class. Quantum Grav. 26, 135002 (2009)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    F. Gackstatter, Ann. Phys. 495, 352 (1983)MathSciNetCrossRefGoogle Scholar
  9. 9.
    G.W. Gibbons, C.M. Warnick, M.C. Werner, Class. Quantum Grav. 25, 245009 (2008)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    J.B. Griffiths, J. Podolsky, Int. J. Mod. Phys. 15, 335 (2006)Google Scholar
  11. 11.
    S. Grunau, V. Kagramanova, Phys. Rev. D 83, 044009 (2011)CrossRefADSGoogle Scholar
  12. 12.
    E. Hackmann, Geodesic equations in black hole space-times with cosmological constant. Ph.D. thesis, Universität Bremen, 2010Google Scholar
  13. 13.
    E. Hackmann, V. Kagramanova, J. Kunz, C. Lämmerzahl, Phys. Rev. D 78, 124018 (2008)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    E. Hackmann, V. Kagramanova, J. Kunz, C. Lämmerzahl, Europhys. Lett. 88, 30008 (2009)CrossRefADSGoogle Scholar
  15. 15.
    E. Hackmann, C. Lämmerzahl, Phys. Rev. Lett. 100, 171101 (2008)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    E. Hackmann, C. Lämmerzahl, Phys. Rev. D 78, 024035 (2008)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    E. Hackmann, C. Lämmerzahl, V. Kagramanova, J. Kunz. Phys. Rev. D 81, 044020 (2010)CrossRefADSGoogle Scholar
  18. 18.
    E. Hackmann, C. Lämmerzahl, Phys. Rev. D 85, 044049 (2012)CrossRefADSGoogle Scholar
  19. 19.
    E. Hackmann, H. Xu, Phys. Rev. D 87, 124030 (2013)CrossRefADSGoogle Scholar
  20. 20.
    Y. Hagihara, Japanese J. Astr. Geophys. 8, 67 (1931)MathSciNetADSGoogle Scholar
  21. 21.
    A. Hurwitz, Vorlesungen über Allgemeine Funktionentheorie und elliptische Funktionen (Springer, Berlin, 1964)CrossRefzbMATHGoogle Scholar
  22. 22.
    V. Kagramanova, J. Kunz, E. Hackmann, C. Lämmerzahl, Phys. Rev. D 81, 124044 (2010)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    G.V. Kraniotis, Class. Quantum Grav. 22, 4391 (2005)MathSciNetCrossRefADSzbMATHGoogle Scholar
  24. 24.
    G.V. Kraniotis, Class. Quantum Grav. 28, 085021 (2011)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    V.S. Manko, E. Ruiz, Class. Quantum Grav. 22, 3555 (2005)MathSciNetCrossRefADSzbMATHGoogle Scholar
  26. 26.
    A.I. Markushevich, Theory of Functions of a Complex Variable, Vol. I, II, III (Chelsea Publishing Co., New York, 1977). Translated and ed. by R.A. SilvermanGoogle Scholar
  27. 27.
    Y. Mino, Phys. Rev. D 67, 084027 (2003)CrossRefADSGoogle Scholar
  28. 28.
    D. Mumford, Tata Lectures on Theta, Vol. I and II (Birkhäuser, Boston, 1983/1984)Google Scholar
  29. 29.
    N.A. Sharp, Gen. Rel. Grav. 10, 659 (1979)MathSciNetCrossRefADSzbMATHGoogle Scholar
  30. 30.
    G. Slezáková, Geodesic Geometry of Black Holes, Ph.D. thesis, University of Waikato, 2006Google Scholar
  31. 31.
    J.R. Villanueva, J. Saavedra, M. Olivares, N. Cruz, Astrophys. Space Sci. 344, 437 (2013)CrossRefADSzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Zentrum für angewandte Raumfahrttechnologie und MikrogravitationUniversität BremenBremenGermany

Personalised recommendations