Self Sustained Traversable Wormholes and Topology Change Induced by Gravity’s Rainbow

  • Remo GarattiniEmail author
Part of the Springer Proceedings in Physics book series (SPPHY, volume 170)


We consider the effects of Gravity’s Rainbow on the self-sustained equation which is responsible to find new traversable wormholes configurations which are sustained by their own gravitational quantum fluctuations. The same self-sustained equation is also used to discover if topology change is possible. In this contribution, we will show that in both uses, the self-sustained equation will produce a Wheeler wormhole, namely a wormhole of Planckian size. This means that, from the point of view of traversability, the wormhole will be traversable in principle, but not in practice. From the topology change point of view, the background metric will be fixed to be Minkowskian in the equation governing the quantum fluctuations, which behaves essentially as a backreaction equation, and the quantum fluctuations are let to evolve. Analyzing this procedure, we will show that the self-sustained equation, endowed with a Gravity’s Rainbow distortion, will be responsible of a topology change with the appearance of a Planckian wormhole.


Planck Scale Topology Change Zero Point Energy Noncommutative Geometry Quantum Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)CrossRefADSGoogle Scholar
  2. 2.
    J.A. Wheeler, Phys. Rev. 97, 511–536 (1955)zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)zbMATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    A. DeBenedictis, R. Garattini, F.S.N. Lobo, Phys. Rev. D 78, 104003 (2008). arXiv:0808.0839 [gr-qc]
  5. 5.
    R. Garattini, Class. Quant. Grav. 22, 1105 (2005). arXiv:gr-qc/0501105
  6. 6.
    R. Garattini, Class. Quant. Grav. 24, 1189 (2007). arXiv:gr-qc/0701019
  7. 7.
    R. Garattini, F.S.N. Lobo, Class. Quant. Grav. 24, 2401 (2007). arXiv:gr-qc/0701020
  8. 8.
    M. Visser, Lorentzian Wormholes: From Einstein to Hawking (American Institute of Physics, New York, 1995)Google Scholar
  9. 9.
    J. Magueijo, L. Smolin, Class. Quant. Grav. 21, 1725 (2004). arXiv:gr-qc/0305055
  10. 10.
    R. Garattini, F.S.N. Lobo, Phys. Rev. D 85, 024043 (2012). arXiv:1111.5729 [gr-qc]
  11. 11.
    R. Garattini, P. Nicolini, Phys. Rev. D 83, 064021 (2011). arXiv:1006.5418 [gr-qc]
  12. 12.
    R. Garattini, EPJ Web Conf. 58 01007 (2013). arXiv:1212.4311 [gr-qc]
  13. 13.
    R. Garattini, F.S.N. Lobo, Phys. Lett. B 671, 146 (2009). arXiv:0811.0919 [gr-qc]
  14. 14.
    R. Garattini, G. Mandanici, Phys. Rev. D 83, 084021 (2011). arXiv:1102.3803 [gr-qc]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di IngegneriaUniversità degli Studi di BergamoDalmineItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di MilanoMilanItaly

Personalised recommendations