There are No Black Holes—Pseudo-Complex General Relativity

  • Walter GreinerEmail author
  • Peter O. Hess
  • Mirko Schäfer
  • Thomas Schönenbach
  • Gunther Caspar
Part of the Springer Proceedings in Physics book series (SPPHY, volume 170)


After a short review on attempts to extend General Relativity, pseudo-complex variables are introduced and their main properties are restated. A modified variational principle has to be introduced in order to obtain a new theory. This allows the appearance of an additional contribution, whose origin is a repulsive, dark energy. After the presentation of the general formalism, as examples the Schwarzschild and the Kerr solutions are discussed. It is shown that a collapsing mass increasingly accumulates dark energy until the collapse is stopped. Rather than a black hole, a gray star is formed. We discuss a possible experimental verification, investigating the orbital frequency of a particle in a circular orbit.


Black Hole Dark Energy Event Horizon Lorentz Transformation Gravitational Collapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the Frankfurt Institute for Advanced Studies (FIAS), “Stiftung Polytechnische Gesellschaft Frankfurt am Main” (SPTG) and from CONACyT are acknowledged.


  1. 1.
    A. Einstein, Ann. Math. 578, 46 (1945)Google Scholar
  2. 2.
    A. Einstein, Rev. Mod. Phys. 35, 20 (1948)Google Scholar
  3. 3.
    C. Mantz, T. Prokopec. arXiv:gr-qc/0804.0213v1 (2008)
  4. 4.
    D. Lovelook, Annali di Matematica Pura ed Applicata 83(1), 43 (1969)CrossRefGoogle Scholar
  5. 5.
    M. Born, Proc. Roy. Soc. A 165, 291 (1938)CrossRefADSGoogle Scholar
  6. 6.
    M. Born, Rev. Mod. Phys. 21, 463 (1949)CrossRefADSzbMATHGoogle Scholar
  7. 7.
    E.R. Caianiello, Lett. Nuo. Cim. 32, 65 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    H.E. Brandt, Found. Phys. Lett. 2, 39 (1989)CrossRefGoogle Scholar
  9. 9.
    H.E. Brandt, Found. Phys. Lett. 4, 523 (1989)CrossRefGoogle Scholar
  10. 10.
    H.E. Brandt, Found. Phys. Lett. 6, 245 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    R.G. Beil, Found. Phys. 33, 1107 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    R.G. Beil, Int. J. Theor. Phys. 26, 189 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    R.G. Beil, Int. J. Theor. Phys. 28, 659 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R.G. Beil, Int. J. Theor. Phys. 31, 1025 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J.W. Moffat, Phys. Rev. D 19, 3554 (1979)MathSciNetCrossRefADSzbMATHGoogle Scholar
  16. 16.
    G. Kunstatter, J.W. Moffat, J. Malzan, J. Math. Phys. 24, 886 (1983)MathSciNetCrossRefADSzbMATHGoogle Scholar
  17. 17.
    F. Antonuccio, Semi-Complex Analysis and Mathematical Physics. arXiv:gr-qc/9311032
  18. 18.
    I.L. Kantor, A.S. Solodovnikov, Hypercomplex Numbers, An Elementary Introduction to Algebra (Springer, Heidelberg, 1989)Google Scholar
  19. 19.
    P.O. Hess, W. Greiner, Int. J. Mod. Phys. E 16, 1643 (2007)CrossRefADSGoogle Scholar
  20. 20.
    P.O. Hess, W. Greiner, Int. J. Mod. Phys. E 18, 51 (2009)CrossRefADSGoogle Scholar
  21. 21.
    P.O. Hess, L. Maghlaoui, W. Greiner, Int. J. Mod. Phys. E 19, 1315 (2010)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    G. Caspar, T. Schönenbach, P.O. Hess, M. Schäfer, W. Greiner, Int. J. Mod. Phys. E 21, 1250015 (2012)Google Scholar
  23. 23.
    R. Adler, M. Bazin, M. Schiffer, Introduction to General Relativity (McGraw Hill, New York, 1975)Google Scholar
  24. 24.
    F. P. Schuller, Dirac-Born-Infeld kinematics, maximal acceleration and almost product manifolds, Ph.D. thesis, Cambridge (2003)Google Scholar
  25. 25.
    F.P. Schuller, M.N.R. Wohlfarth, T.W. Grimm, Class. Quantum Grav. 20(1)Google Scholar
  26. 26.
    C.M. Will, Living Rev. Relat. 9, 3 (2006)ADSGoogle Scholar
  27. 27.
    M. Visser, Phys. Rev. D 54, 5103 (1996)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman Company, San Francisco, 1973)Google Scholar
  29. 29.
    T. Schönenbach, G. Caspar, P.O. Hess, T. Boller, A. Mueller, M. Schäfer, W. Greiner, Month. Notic. Roy. Astr. Soc. 430, 2999 (2013)Google Scholar
  30. 30.
    T. Schönenbach, G. Caspar, P.O. Hess, T. Boller, A. Mueller, M. Schäfer, W. Greiner, see contribution within this volumeGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Walter Greiner
    • 1
    Email author
  • Peter O. Hess
    • 2
  • Mirko Schäfer
    • 1
  • Thomas Schönenbach
    • 1
  • Gunther Caspar
    • 1
  1. 1.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
  2. 2.Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations