Advertisement

Fermions on AdS

  • Victor E. AmbruşEmail author
  • Elizabeth Winstanley
Chapter
Part of the Springer Proceedings in Physics book series (SPPHY, volume 170)

Abstract

We construct the Feynman propagator for Dirac fermions on anti-de Sitter space-time and present an analytic expression for the bi-spinor of parallel transport. We then renormalise the vacuum expectation value of the stress-energy tensor and end by analysing its renormalised expectation value at finite temperatures.

Notes

Acknowledgments

This work is supported by the Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC grant ST/J000418/1, the School of Mathematics and Statistics at the University of Sheffield and European Cooperation in Science and Technology (COST) action MP0905 “Black Holes in a Violent Universe”.

References

  1. 1.
    B. Allen, T. Jacobson, Vector two-point functions in maximally symmetric spaces. Commun. Math. Phys. 103, 669–692 (1986)zbMATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    V.E. Ambruş, E. Winstanley, Fermions on adS. Paper in preparationGoogle Scholar
  3. 3.
    R. Camporesi, A. Higuchi, Stress-energy tensors in anti-de Sitter spacetime. Phys. Rev. D 45, 3591–3603 (1992)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    S.M. Christensen, Regularization, renormalization, and covariant geodesic point separation. Phys. Rev. D 17, 946–963 (1978)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    I. Cotăescu, Dirac fermions in de Sitter and anti-de Sitter backgrounds. Rom. J. Phys. 52, 895–940 (2007)zbMATHGoogle Scholar
  6. 6.
    C. Dappiaggi, T.-P. Hack, N. Pinamonti, The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21, 1241–1312 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    W. Mück, Spinor parallel propagator and Green’s function in maximally symmetric spaces. J. Phys. A 33, 3021–3026 (2000)zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    A.-H. Najmi, A.C. Ottewill, Quantum states and the Hadamard form. II. Energy minimization for spin-1/2 fields. Phys. Rev. D 30, 2573–2578 (1984)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Consortium for Fundamental Physics, School of Mathematics and StatisticsThe University of SheffieldSheffieldUK

Personalised recommendations