Quadratic Palatini Gravity and Stable Black Hole Remnants

  • Diego Rubiera-GarciaEmail author
  • Francisco S. N. Lobo
  • Gonzalo J. Olmo
Part of the Springer Proceedings in Physics book series (SPPHY, volume 170)


We present a four-dimensional Planck-scale corrected quadratic extension of General Relativity (GR) where no a priori relation between metric and connection is imposed (Palatini formalism). Static spherically symmetric electrovacuum solutions are obtained in exact analytical form. The macroscopic properties of these solutions are in excellent agreement with GR, though the region around the central singularity is modified. In fact, the singularity is generically replaced by a wormhole supported by the electric field, which provides a non-trivial topology to the space-time. Moreover, for a certain charge-to-mass ratio the geometry is completely regular everywhere. For such regular solutions, the horizon disappears in the microscopic regime below a critical number of charges (\(N<17\)), yielding a set of massive objects that could be naturally identified as black hole remnants.


Event Horizon Curvature Divergence Primordial Black Hole Wormhole Solution Inside Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.M. Will, The confrontation between general relativity and experiment. Living Rev. Rel. 9, 3 (2006) [gr-qc/0510072]Google Scholar
  2. 2.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)Google Scholar
  3. 3.
    M. Green, J. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)zbMATHGoogle Scholar
  4. 4.
    G.J. Olmo, D. Rubiera-Garcia, Importance of torsion and invariant volumes in Palatini theories of gravity. Phys. Rev. D 88, 084030 (2013). arXiv:1306.4210 [hep-th]
  5. 5.
    G.J. Olmo, D. Rubiera-Garcia, Reissner-Nordström black holes in extended Palatini theories. Phys. Rev. D 86, 044014 (2012). arXiv:1207.6004 [gr-qc]
  6. 6.
    G.J. Olmo, D. Rubiera-Garcia, Nonsingular black holes in quadratic Palatini gravity. Eur. Phys. J. C 72, 2098 (2012). arXiv:1112.0475 [gr-qc]
  7. 7.
    G.J. Olmo, D. Rubiera-Garcia, Nonsingular charged black holes à la Palatini. Int. J. Mod. Phys. D 21, 1250067 (2012). arXiv:1207.4303 [gr-qc]
  8. 8.
    J.A. Wheeler, Geons. Phys. Rev. 97, 511 (1955)zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    S. Hawking, Gravitationally collapsed objects of very low mass. Mon. Not. Roy. Astron. Soc. 152, 75 (1971)CrossRefADSGoogle Scholar
  10. 10.
    F.S.N. Lobo, G.J. Olmo, D. Rubiera-Garcia, Semiclassical geons as solitonic black hole remnants. JCAP 1307, 011 (2013)CrossRefADSGoogle Scholar
  11. 11.
    G.J. Olmo, D. Rubiera-Garcia, Semiclassical geons at particle accelerators, JCAP 1402, 010 (2014), arXiv:1306.6537 [hep-th]
  12. 12.
    F.S.N. Lobo, J. Martinez-Asencio, G.J. Olmo, D. Rubiera-Garcia, Dynamical generation of wormholes with charged fluids in quadratic Palatini gravity, Phys. Rev. D 90, 024033 (2014), arXiv:1403.0105 [hep-th]
  13. 13.
    M. Borunda, B. Janssen, M. Bastero-Gil, Palatini versus metric formulation in higher curvature gravity. JCAP 0811, 008 (2008), arXiv:0804.4440 [hep-th]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Diego Rubiera-Garcia
    • 1
    Email author
  • Francisco S. N. Lobo
    • 2
  • Gonzalo J. Olmo
    • 3
  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de LisboaLisbonPortugal
  3. 3.Departamento de Física Teórica and Instituto de Física CorpuscularCentro Mixto Universidad de Valencia - Consejo Superior de Investigaciones Científicas. Universidad de ValenciaBurjassotSpain

Personalised recommendations