Advertisement

Primordial Black Holes and Quantum Effects

  • Bernard J. CarrEmail author
Chapter
Part of the Springer Proceedings in Physics book series (SPPHY, volume 170)

Abstract

Primordial black holes are of special interest because of the crucial role of quantum effects in their formation and evaporation. This means that they provide a unique probe of the early universe, high-energy physics and quantum gravity. We highlight some recent developments in the subject, including improved limits on the fraction of the Universe going into evaporating PBHs in the mass range \(10^9\)\(10^{17}\,\mathrm g \) and the possibility of using PBHs to probe a cosmological bounce.

Keywords

Black Hole Dark Matter Cosmic Microwave Background Generalize Uncertainty Principle Primordial Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B.J. Carr, K. Kohri, Y. Sendouda, J. Yokoyama, Phys. Rev. D. 81, 104019 (2010)CrossRefADSGoogle Scholar
  2. 2.
    S.W. Hawking, Nature 248, 30–31 (1974)CrossRefADSGoogle Scholar
  3. 3.
    X. Calmet, B.J. Carr, E. Winstanley, Quantum Black Holes (Springer, Berlin, 2013)Google Scholar
  4. 4.
    B.J. Carr, Astrophys. J. 201, 1–19 (1975)CrossRefADSGoogle Scholar
  5. 5.
    J.H. MacGibbon, Phys. Rev. D. 44, 376–392 (1991)CrossRefADSGoogle Scholar
  6. 6.
    J.H. MacGibbon, B.R. Webber, Phys. Rev. D. 41, 3052–3079 (1990)CrossRefADSGoogle Scholar
  7. 7.
    A. Heckler, Phys. Rev. D. 55, 480–488 (1997)CrossRefADSGoogle Scholar
  8. 8.
    A. Heckler, Phys. Rev. Lett. 78, 3430–3433 (1997)CrossRefADSGoogle Scholar
  9. 9.
    J.H. MacGibbon, B.J. Carr, D.N. Page, Phys. Rev. D. 78, 064043 (2008). arXiv:0709.2380
  10. 10.
    K. Kohri, J. Yokoyama, Phys. Rev. D. 61, 023501 (1999)CrossRefADSGoogle Scholar
  11. 11.
    D.N. Page, S.W. Hawking, Astrophys. J. 206, 1–7 (1976)CrossRefADSGoogle Scholar
  12. 12.
    A. Barrau, D. Blais, G. Boudoul, D. Polarski, Phys. Lett. B. 551, 218–225 (2003)CrossRefADSGoogle Scholar
  13. 13.
    E.L. Wright, Astrophys. J. 459, 487–490 (1996)CrossRefADSGoogle Scholar
  14. 14.
    R. Lehoucq, M. Casse, J. Casandjan, I. Grnier, Astron. Astrophys. 502, 37–43 (2009)CrossRefADSGoogle Scholar
  15. 15.
    K. Jedamzik, Phys. Rev. D. 55, 5871–5875 (1997)CrossRefADSGoogle Scholar
  16. 16.
    D. Blais, T. Bringmann, C. Kiefer, D. Polarski, Phys. Rev. D. 67, 024024 (2003)CrossRefADSGoogle Scholar
  17. 17.
    R. Saito, J. Yokoyama, Phys. Rev. Lett. 102, 161101 (2009)CrossRefADSGoogle Scholar
  18. 18.
    J.H. MacGibbon, Nature 329, 308–309 (1987)CrossRefADSGoogle Scholar
  19. 19.
    B.J. Carr, J.H. Gilbert, J.E. Lidsey, Phys. Rev. D. 50, 4853–4867 (1994)CrossRefADSGoogle Scholar
  20. 20.
    B.J. Carr, A.A. Coley, Int. J. Mod. Phys. D. 20, 2733–2738 (2011)CrossRefADSzbMATHGoogle Scholar
  21. 21.
    N. Afshordi, P. McDonald, D.N. Spergel, Astrophys. J. Lett. 594, L71–74 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyQueen Mary University of LondonLondonUK

Personalised recommendations