Advertisement

Phase Transitions of Regular Schwarzschild-anti-deSitter Black Holes

  • Antonia M. FrassinoEmail author
Chapter
Part of the Springer Proceedings in Physics book series (SPPHY, volume 170)

Abstract

We study a solution of the Einstein’s equations generated by a self-gravitating, anisotropic, static, non-singular matter fluid. The resulting Schwarzschild like solution is regular and accounts for smearing effects of noncommutative fluctuations of the geometry. We call this solution regular Schwarzschild spacetime. In the presence of an Anti-deSitter cosmological term, the regularized metric offers an extension of the Hawking-Page transition into a van der Waals-like phase diagram. Specifically the regular Schwarzschild-Anti-deSitter geometry undergoes a first order small/large black hole transition similar to the liquid/gas transition of a real fluid. In the present analysis we have considered the cosmological constant as a dynamical quantity and its variation is included in the first law of black hole thermodynamics.

Keywords

Black Hole Cosmological Constant Event Horizon Critical Exponent Charged Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported by the Helmholtz Research School for Quark Matter Studies (H-QM). The author is grateful to P. Nicolini and D. Kubiznak for having carefully read the draft and provided valuable comments.

References

  1. 1.
    P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 632, 547 (2006). arXiv:gr-qc/0510112
  2. 2.
    P. Nicolini, Int. J. Mod. Phys. A 24, 1229 (2009). arXiv:0807.1939 [hep-th]
  3. 3.
    P. Nicolini, G. Torrieri, JHEP 1108, 097 (2011). arXiv:1105.0188 [gr-qc]
  4. 4.
    A. Smailagic, E. Spallucci, Int. J. Mod. Phys. D 22, 1350010 (2013). arXiv:1212.5044 [hep-th]
  5. 5.
    D. Kastor, S. Ray, J. Traschen, Class. Quant. Grav. 26, 195011 (2009). arXiv:0904.2765 [hep-th]
  6. 6.
    B.P. Dolan, Class. Quant. Grav. 28, 125020 (2011). arXiv:1008.5023 [gr-qc]
  7. 7.
    D. Kubiznak, R.B. Mann, JHEP 1207, 033 (2012). arXiv:1205.0559 [hep-th]
  8. 8.
    M. Cvetic, G.W. Gibbons, D. Kubiznak, C.N. Pope, Phys. Rev. D 84, 024037 (2011). arXiv:1012.2888 [hep-th]
  9. 9.
    S. Gunasekaran, R.B. Mann, D. Kubiznak, JHEP 1211, 110 (2012). arXiv:1208.6251 [hep-th]
  10. 10.
    N. Altamirano, D. Kubiznak, R.B. Mann, Phys. Rev. D 88, 10 (2013) 101502. arXiv:1306.5756 [hep-th]
  11. 11.
    A.M. Frassino, D. Kubiznak, R.B. Mann, F. Simovic, JHEP 1409, 080 (2014). arXiv:1406.7015 [hep-th]
  12. 12.
    E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998). arXiv:hep-th/9803131
  13. 13.
    S.W. Hawking, D.N. Page, Commun. Math. Phys. 87, 577–588 (1983)Google Scholar
  14. 14.
    A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Phys. Rev. D 60, 064018 (1999). arXiv:hep-th/9902170
  15. 15.
    C. Niu, Y. Tian, X.-N. Wu, Phys. Rev. D 85, 024017 (2012). arXiv:1104.3066 [hep-th]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
  2. 2.Institut für Theoretische PhysikJohann Wolfgang Goethe-Universität Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations