Abstract
A localised particle in Quantum Mechanics is described by a wave packet in position space, regardless of its energy. However, from the point of view of General Relativity, if the particle’s energy density exceeds a certain threshold, it should be a black hole. In order to combine these two pictures, we introduce a horizon wave-function determined by the position wave-function, which yields the probability that the particle is a black hole. The existence of a (fuzzy) minimum mass for black holes naturally follows, and we also show that our construction entails an effective Generalised Uncertainty Principle simply obtained by adding the uncertainties coming from the two wave-functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
K.S. Thorne, in Nonspherical Gravitational Collapse: A Short Review, ed. by J.R. Klauder. Magic Without Magic (San Francisco, 1972), p. 231
P.D. D’Eath, P.N. Payne, Phys. Rev. D 46, 658, 675, 694 (1992)
G.L. Alberghi, R. Casadio, O. Micu, A. Orlandi, JHEP 1109, 023 (2011)
R. Casadio, Localised particles and fuzzy horizons: a tool for probing quantum black holes. arXiv:1305.3195 [gr-qc]
R. Casadio, F. Scardigli, Horizon wave-function for single localized particles: GUP and quantum black hole decay. arXiv:1306.5298 [gr-qc]
M. Maggiore, Phys. Lett. B 319, 83 (1993)
A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)
F. Scardigli, Phys. Lett. B 452, 39 (1999)
F. Scardigli, R. Casadio, Class. Quant. Grav. 20, 3915 (2003)
F. Scardigli, R. Casadio, Int. J. Mod. Phys. D 18, 319 (2009)
T.D. Newton, E.P. Wigner, Rev. Mod. Phys. 3, 400 (1949)
X. Calmet, D. Fragkakis, N. Gausmann, Eur. Phys. J. C 71, 1781 (2011)
X. Calmet, W. Gong, S.D.H. Hsu, Phys. Lett. B 668, 20 (2008)
T. Banks, W. Fischler, A Model for high-energy scattering in quantum gravity. arXiv:hep-th/9906038
D.M. Eardley, S.B. Giddings, Phys. Rev. D 66, 044011 (2002)
S.B. Giddings, S.D. Thomas, Phys. Rev. D 65, 056010 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Casadio, R. (2016). What Is the Schwarzschild Radius of a Quantum Mechanical Particle?. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 1st Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-20046-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-20046-0_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20045-3
Online ISBN: 978-3-319-20046-0
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)