Skip to main content

What Is the Schwarzschild Radius of a Quantum Mechanical Particle?

  • Chapter
  • First Online:
1st Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((volume 170))

Abstract

A localised particle in Quantum Mechanics is described by a wave packet in position space, regardless of its energy. However, from the point of view of General Relativity, if the particle’s energy density exceeds a certain threshold, it should be a black hole. In order to combine these two pictures, we introduce a horizon wave-function determined by the position wave-function, which yields the probability that the particle is a black hole. The existence of a (fuzzy) minimum mass for black holes naturally follows, and we also show that our construction entails an effective Generalised Uncertainty Principle simply obtained by adding the uncertainties coming from the two wave-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K.S. Thorne, in Nonspherical Gravitational Collapse: A Short Review, ed. by J.R. Klauder. Magic Without Magic (San Francisco, 1972), p. 231

    Google Scholar 

  2. P.D. D’Eath, P.N. Payne, Phys. Rev. D 46, 658, 675, 694 (1992)

    Google Scholar 

  3. G.L. Alberghi, R. Casadio, O. Micu, A. Orlandi, JHEP 1109, 023 (2011)

    Article  ADS  Google Scholar 

  4. R. Casadio, Localised particles and fuzzy horizons: a tool for probing quantum black holes. arXiv:1305.3195 [gr-qc]

  5. R. Casadio, F. Scardigli, Horizon wave-function for single localized particles: GUP and quantum black hole decay. arXiv:1306.5298 [gr-qc]

  6. M. Maggiore, Phys. Lett. B 319, 83 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  8. F. Scardigli, Phys. Lett. B 452, 39 (1999)

    Article  ADS  Google Scholar 

  9. F. Scardigli, R. Casadio, Class. Quant. Grav. 20, 3915 (2003)

    Google Scholar 

  10. F. Scardigli, R. Casadio, Int. J. Mod. Phys. D 18, 319 (2009)

    Google Scholar 

  11. T.D. Newton, E.P. Wigner, Rev. Mod. Phys. 3, 400 (1949)

    Article  ADS  Google Scholar 

  12. X. Calmet, D. Fragkakis, N. Gausmann, Eur. Phys. J. C 71, 1781 (2011)

    Article  ADS  Google Scholar 

  13. X. Calmet, W. Gong, S.D.H. Hsu, Phys. Lett. B 668, 20 (2008)

    Article  ADS  Google Scholar 

  14. T. Banks, W. Fischler, A Model for high-energy scattering in quantum gravity. arXiv:hep-th/9906038

  15. D.M. Eardley, S.B. Giddings, Phys. Rev. D 66, 044011 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  16. S.B. Giddings, S.D. Thomas, Phys. Rev. D 65, 056010 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Casadio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casadio, R. (2016). What Is the Schwarzschild Radius of a Quantum Mechanical Particle?. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 1st Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-20046-0_26

Download citation

Publish with us

Policies and ethics