Advertisement

Black Holes in Supergravity

  • Kellogg S. StelleEmail author
Chapter
Part of the Springer Proceedings in Physics book series (SPPHY, volume 170)

Abstract

A brief review is given of the use of duality symmetries to form orbits of supergravity black-hole solutions and their relation to extremal (i.e. BPS) solutions at the limits of such orbits. An important technique in this analysis uses a timelike dimensional reduction and exchanges the stationary black-hole problem for a nonlinear sigma-model problem. Families of BPS solutions are characterized by nilpotent orbits under the duality symmetries, based upon a tri-graded or penta-graded decomposition of the corresponding duality group algebra.

Keywords

Duality Group Extremal Solution Supergravity Solution Maximal Supergravity Nonlinear Sigma Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Neugebaur, D. Kramer, Ann. Phys. (Leipzig) 24, 62 (1969)CrossRefADSGoogle Scholar
  2. 2.
    P. Breitenlohner, D. Maison, G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories. Commun. Math. Phys. 120, 295 (1988)zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    G. Clement, D. Gal’tsov, Stationary BPS solutions to dilaton-axion gravity. Phys. Rev. D 54, 6136 (1996) arXiv:hep-th/9607043
  4. 4.
    D.V. Gal’tsov, O.A. Rytchkov, Generating branes via sigma-models. Phys. Rev. D 58, 122001 (1998) arXiv:hep-th/9801160
  5. 5.
    E. Cremmer, B. Julia, The \(SO(8)\) supergravity. Nucl. Phys. B 159, 141 (1979)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    B. de Wit, A.K. Tollsten, H. Nicolai, Locally supersymmetric D = 3 nonlinear sigma models. Nucl. Phys. B 392, 3 (1993) arXiv:hep-th/9208074
  7. 7.
    P. Meessen, T. Ortin, The Supersymmetric configurations of N = 2, D = 4 supergravity coupled to vector supermultiplets. Nucl. Phys. B 749, 291 (2006) arXiv:hep-th/0603099
  8. 8.
    M. Cvetič, D. Youm, Dyonic BPS saturated black holes of heterotic string on a six torus. Phys. Rev. D 53, 584 (1996) arXiv:hep-th/9507090
  9. 9.
    M. Cvetič, A.A. Tseytlin, General class of BPS saturated dyonic black holes as exact superstring solutions. Phys. Lett. B 366, 95 (1996) arXiv:hep-th/9510097
  10. 10.
    J. Eells Jr, J.H. Sampson, Am. J. Math. 86, 109 (1964)Google Scholar
  11. 11.
    G. Bossard, H. Nicolai, K.S. Stelle, Universal BPS structure of stationary supergravity solutions. JHEP 0907, 003 (2009). arXiv:0902.4438 [hep-th]
  12. 12.
    J. Ehlers, Konstruktion und Charakterisierungen von Lösungen der Einsteinschen Gravitationsgleichungen, Dissertation, Hamburg (1957)Google Scholar
  13. 13.
    M. Gunaydin, G. Sierra, P.K. Townsend, Exceptional supergravity theories and the MAGIC square. Phys. Lett. B 133, 72 (1983)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    E. Cremmer, H. Lu, C.N. Pope, K.S. Stelle, Spectrum generating symmetries for BPS solitons. Nucl. Phys. B 520, 132 (1998) arXiv:hep-th/9707207
  15. 15.
    G. Bossard, H. Nicolai, Multi-black holes from nilpotent Lie algebra orbits. Gen. Rel. Grav. 42, 509 (2010). arXiv:0906.1987 [hep-th]
  16. 16.
    G. Bossard, C. Ruef, Interacting non-BPS black holes. Gen. Rel. Grav. 44, 21 (2012). arXiv:1106.5806 [hep-th]

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The Blackett LaboratoryImperial College LondonLondonUK

Personalised recommendations