Skip to main content

Scattering and Unitarity Methods in Two Dimensions

  • Chapter
  • First Online:
1st Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 170))

Abstract

The standard unitarity-cut method is applied to several massive two-dimensional models, including the world-sheet AdS\(_5 \times S^5\) superstring, to compute \(2\rightarrow 2\) scattering S-matrices at one loop from tree level amplitudes. Evidence is found for the cut-constructibility of supersymmetric models, while for models without supersymmetry (but integrable) the missing rational terms can be interpreted as a shift in the coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the three-dimensional case see [35].

  2. 2.

    This is nothing but the application of the optical theorem. The case where the loop amplitude is subdivided into more than two pieces is referred to as generalized unitarity.

  3. 3.

    It would be interesting to analyze models which are just supersymmetric and not integrable.

  4. 4.

    Without loss of generality, one can consider in (20.1) the amplitudes associated to the first product of \(\delta \)-functions \(\delta (\text {p}_1 - \text {p}_3)\delta (\text {p}_2 - \text {p}_4)\). The denominator in (20.3) is required to make contact with the standard definition of the S-matrix in two dimensions.

  5. 5.

    At two loops, to constrain completely the four components of the two momenta circulating in the loops one needs four cuts, each one giving an on-shell \(\delta \)-function. Two-particle cuts at two loops would result in a manifold of conditions for the loop momenta.

  6. 6.

    This is like using \(f(x)\delta (x-x_0)=f(x_0)\delta (x-x_0)\) where f(x) are the tree-level amplitudes in the integrals.

  7. 7.

    This corresponds to the choice \(p_3=p_1\), \(p_4=p_2\).

  8. 8.

    In (20.8), \(\tilde{S}^{(0)}(p_1,p_2)=4 (\varepsilon _2\,\mathrm{p}_1-\varepsilon _1\,\mathrm{p}_2) S^{(0)}(p_1,p_2)\) and the denominator on the right-hand side comes from the Jacobian \(J(p_1,p_2)\) assuming a standard relativistic dispersion relation (for the theories we consider, at one-loop this is indeed the case).

  9. 9.

    Because its bubble integral \(I_0\) can only contribute to rational terms, the t-channel contribution has been neglected in  [7], where all rational terms were determined from symmetry considerations.

  10. 10.

    In some sense this is natural as, in general dimensions, quantum field theory amplitudes have the form (20.1), while the \(\delta \)-function identity (20.2) is specific to two dimensions.

  11. 11.

    See [6] for the generalization to the case which includes fermions.

  12. 12.

    In the sine-Gordon case the agreement is exact. For \(n\ge 2\) the shift in the coupling is by the dual Coxeter number of the group \(G=\text {SO}(n)\), a structure appears regularly in the quantization of WZW and gauged WZW models, where k is the quantized level (see for example [13]).

  13. 13.

    The reduced AdS\(_2 \times S^2\) theory is in fact given by the \(\mathscr {N} = 2\) supersymmetric sine-Gordon model and hence is supersymmetric. The reduced AdS\(_3 \times S^3\) and AdS\(_5 \times S^5\) theories have a non-local \(\mathscr {N}=4\) and \(\mathscr {N}=8\) supersymmetry respectively, which manifests as a q-deformation of the S-matrix symmetry algebra. Furthermore, we have also checked that the unitarity-cutting procedure matches the perturbative result at one-loop in the \(\mathscr {N}=1\) supersymmetric sine-Gordon model [18].

  14. 14.

    Notice that this is a non-relativistic model, as seen quantizing it perturbatively and noticing that the choice of a flat Minkowski worldsheet metric is incompatible with Virasoro constraints (see for example [24]).

  15. 15.

    Notice that the non-relativistic dispersion relation \(\varepsilon (\mathrm{p})=\sqrt{1+\frac{\lambda }{\pi ^2}\sin ^2\frac{\mathrm{p}}{2}}\) [25, 37], when expanded in the near-BMN limit \(\mathrm{p}\rightarrow \zeta \mathrm{p}\), corresponding to the perturbative regime, leads to a relativistic energy \(\varepsilon _i=\sqrt{1+\mathrm{p}_i^2}\).

  16. 16.

    In the comparison with the world-sheet calculation all dimensional quantities (such as the spin-chain length and the momenta) should be rescaled via a factor of \(\sqrt{\lambda }/(2\pi )\) [31], for us \(\mathrm{p}\rightarrow \zeta \,\mathrm{p}\).

  17. 17.

    This is done in the so-called constant-J gauge \(a = 0\).

References

  1. L.J. Dixon (1996)

    Google Scholar 

  2. H. Elvang, Y.t. Huang (2013)

    Google Scholar 

  3. W.M. Chen, Y.t. Huang, JHEP 1111, 057 (2011). doi:10.1007/JHEP11(2011)057

  4. S. Caron-Huot, Y.t. Huang, JHEP 1303, 075 (2013). doi:10.1007/JHEP03(2013)075

  5. L. Bianchi, M.S. Bianchi (2013)

    Google Scholar 

  6. L. Bianchi, V. Forini, B. Hoare, JHEP 1307, 088 (2013). doi:10.1007/JHEP07(2013)088

  7. O.T. Engelund, R.W. McKeown, R. Roiban (2013)

    Google Scholar 

  8. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Nucl. Phys. B 425, 217 (1994). doi:10.1016/0550-3213(94)90179-1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. T.J. Hollowood, J.L. Miramontes, Q.H. Park, Nucl. Phys. B 445, 451 (1995). doi:10.1016/0550-3213(95)00142-F

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. I. Bakas, Q.H. Park, H.J. Shin, Phys. Lett. B 372, 45 (1996). doi:10.1016/0370-2693(96)00026-3

    Google Scholar 

  11. A.B. Zamolodchikov, A.B. Zamolodchikov, Ann. Phys. 120, 253 (1979). doi:10.1016/0003-4916(79)90391-9

    Article  MathSciNet  ADS  Google Scholar 

  12. N. Dorey, T.J. Hollowood, Nucl. Phys. B 440, 215 (1995). doi:10.1016/0550-3213(95)00074-3

    Google Scholar 

  13. E. Witten, Commun. Math. Phys. 92, 455 (1984). doi:10.1007/BF01215276

    Google Scholar 

  14. B. Hoare, A. Tseytlin, JHEP 1011, 111 (2010). doi:10.1007/JHEP11(2010)111

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Grigoriev, A.A. Tseytlin, Nucl. Phys. B 800, 450 (2008). doi:10.1016/j.nuclphysb.2008.01.006

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A. Mikhailov, S. Schafer-Nameki, JHEP 0805, 075 (2008). doi:10.1088/1126-6708/2008/05/075

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Grigoriev, A.A. Tseytlin, Int. J. Mod. Phys. A 23, 2107 (2008). doi:10.1142/S0217751X08040652

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. R. Shankar, E. Witten, Phys. Rev. D 17, 2134 (1978). doi:10.1103/PhysRevD.17.2134

    Article  ADS  Google Scholar 

  19. R. Roiban, A.A. Tseytlin, JHEP 0904, 078 (2009). doi:10.1088/1126-6708/2009/04/078

    Article  MathSciNet  ADS  Google Scholar 

  20. B. Hoare, A. Tseytlin, JHEP 1002, 094 (2010). doi:10.1007/JHEP02(2010)094

    Article  MathSciNet  ADS  Google Scholar 

  21. B. Hoare, A. Tseytlin, Nucl. Phys. B 851, 161 (2011). doi:10.1016/j.nuclphysb.2011.05.016

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. K.i. Kobayashi, T. Uematsu, Phys. Lett. B 275, 361 (1992). doi:10.1016/0370-2693(92)91603-7

    Google Scholar 

  23. B.Hoare, T.J. Hollowood, J.L. Miramontes (2013)

    Google Scholar 

  24. J. Callan, G. Curtis, H.K. Lee, T. McLoughlin, J.H. Schwarz, I. Swanson et al. Nucl. Phys. B 673, 3 (2003). doi:10.1016/j.nuclphysb.2003.09.008

    Google Scholar 

  25. N. Beisert, Adv. Theor. Math. Phys. 12, 945 (2008)

    Article  MathSciNet  Google Scholar 

  26. G. Arutyunov, S. Frolov, M. Staudacher, JHEP 0410, 016 (2004). doi:10.1088/1126-6708/2004/10/016

    Article  MathSciNet  ADS  Google Scholar 

  27. R.A. Janik, Phys. Rev. D 73, 086006 (2006). doi:10.1103/PhysRevD.73.086006

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Volin, J. Phys. A 42, 372001 (2009). doi:10.1088/1751-8113/42/37/372001

    Article  MathSciNet  Google Scholar 

  29. N. Beisert, R. Hernandez, E. Lopez, JHEP 0611, 070 (2006). doi:10.1088/1126-6708/2006/11/070

    Article  MathSciNet  ADS  Google Scholar 

  30. N. Beisert, B. Eden, M. Staudacher, J. Stat. Mech. 0701, P01021 (2007). doi:10.1088/1742-5468/2007/01/P01021

    Google Scholar 

  31. T. Klose, T. McLoughlin, R. Roiban, K. Zarembo, JHEP 0703, 094 (2007). doi:10.1088/1126-6708/2007/03/094

    Article  MathSciNet  ADS  Google Scholar 

  32. T. Klose, K. Zarembo, JHEP 0702, 071 (2007). doi:10.1088/1126-6708/2007/02/071

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Klose, T. McLoughlin, J. Minahan, K. Zarembo, JHEP 0708, 051 (2007). doi:10.1088/1126-6708/2007/08/051

    Article  MathSciNet  ADS  Google Scholar 

  34. J.M. Maldacena, I. Swanson, Phys. Rev. D 76, 026002 (2007). doi:10.1103/PhysRevD.76.026002

    Article  ADS  Google Scholar 

  35. V. Giangreco, M. Puletti, T. Klose, O. Ohlsson, Sax. Nucl. Phys. B 792, 228 (2008). doi:10.1016/j.nuclphysb.2007.09.018

    Google Scholar 

  36. G. Arutyunov, S. Frolov, M. Zamaklar, Nucl. Phys. B 778, 1 (2007). doi:10.1016/j.nuclphysb.2006.12.026

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. N. Beisert, V. Dippel, M. Staudacher, JHEP 0407, 075 (2004). doi:10.1088/1126-6708/2004/07/075

    Article  MathSciNet  ADS  Google Scholar 

  38. G. Arutyunov, S. Frolov, J. Phys. A 42, 254003 (2009). doi:10.1088/1751-8113/42/25/254003

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Arutyunov, S. Frolov, M. Zamaklar, JHEP 0704, 002 (2007). doi:10.1088/1126-6708/2007/04/002

    Article  MathSciNet  ADS  Google Scholar 

  40. C. Ahn, R.I. Nepomechie, Lett. Math. Phys. 99, 209 (2012). doi:10.1007/s11005-011-0478-9

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Forini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Forini, V., Bianchi, L., Hoare, B. (2016). Scattering and Unitarity Methods in Two Dimensions. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 1st Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-20046-0_20

Download citation

Publish with us

Policies and ethics