Advertisement

The Black Hole Uncertainty Principle Correspondence

  • Bernard J. CarrEmail author
Chapter
Part of the Springer Proceedings in Physics book series (SPPHY, volume 170)

Abstract

The Black Hole Uncertainty Principle correspondence proposes a connection between the Uncertainty Principle on microscopic scales and black holes on macroscopic scales. This is manifested in a unified expression for the Compton wavelength and Schwarzschild radius. It is a natural consequence of the Generalized Uncertainty Principle, which suggests corrections to the Uncertainty Principle as the energy increases towards the Planck value. It also entails corrections to the event horizon size as the black hole mass falls to the Planck value, leading to the concept of a Generalized Event Horizon. One implication of this is that there could be sub-Planckian black holes with a size of order their Compton wavelength. Loop quantum gravity suggests the existence of black holes with precisely this feature. The correspondence leads to a heuristic derivation of the black hole temperature and suggests how the Hawking formula is modified in the sub-Planckian regime.

References

  1. 1.
    R.J. Adler, D.I. Santiago, Mod. Phys. Lett. A 14, 1371 (1999)CrossRefADSGoogle Scholar
  2. 2.
    R.J. Adler, P. Chen, D.I. Santiago, Gen. Rel. Grav. 33, 2101 (2001)Google Scholar
  3. 3.
    P. Chen, R.J. Adler. arXiv:0205106
  4. 4.
    R.J. Adler. arXiv:1001.1205 [gr-qc]
  5. 5.
    M. Maggiore, Phys. Lett. B 304, 65 (1993)CrossRefADSGoogle Scholar
  6. 6.
    M. Maggiore, Phys. Lett. B 319, 83 (1993)Google Scholar
  7. 7.
    M. Maggiore, Phys. Rev. D 49, 5182 (1994)Google Scholar
  8. 8.
    A. Ashtekar, S. Fiarhurst, J.L. Willis, Class. Quant. Grav. 20, 1031 (2003)CrossRefADSzbMATHGoogle Scholar
  9. 9.
    G.M. Hossain, V. Husain, S.S. Seahra, Class. Quant. Grav. 207, 165013 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    B.S. Kay, Class. Quant. Grav. 15, L89–L98 (1998)MathSciNetCrossRefADSzbMATHGoogle Scholar
  11. 11.
    B.S. Kay, V. Abyaneh. arXiv:0710.0992 (2007)
  12. 12.
    G. Veneziano, Europhys. Lett. 2, 199 (1986)CrossRefADSGoogle Scholar
  13. 13.
    E. Witten, Phys. Today April 24 (1996)Google Scholar
  14. 14.
    F. Scardigli, Phys. Lett. B 452, 39 (1999)CrossRefADSGoogle Scholar
  15. 15.
    D.J. Gross, P.F. Mende, Nuc. Phys. B 303, 407 (1988)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    D. Amati, M. Ciafaloni, G. Veneziano, Phys, Lett. B 216, 41 (1989)CrossRefADSGoogle Scholar
  17. 17.
    T. Yoneya, Mod. Phys. Lett. A 4, 1587 (1989)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    B.J. Carr, L. Modesto, I. Prémont-Schwarz. arXiv:1107.0708 [gr-qc]
  19. 19.
    A. Bonnano, M. Reuter, Phys. Rev. D. 73, 083005 (2006)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    P. Jizba, H. Kleinert, F. Scardigli, AIP Conf. Proc. 1446, 181 (2012)Google Scholar
  21. 21.
    C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    A. Ashtekar, Class. Quant. Grav. 21, R53 (2004)MathSciNetCrossRefADSzbMATHGoogle Scholar
  23. 23.
    T. Thiemann, Lect. Notes Phys. 631, 41–135 (2003)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    T. Thiemann, Lect. Notes Phys. 721, 185–263 (2007)Google Scholar
  25. 25.
    A. Ashtekar, Phys. Rev. Lett. 57, 2244–2247 (1986)MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    L. Modesto, Phys. Rev. D 70, 124009 (2004)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    L. Modesto, Class. Quant. Grav. 23, 5587–5602 (2006)Google Scholar
  28. 28.
    L. Modesto, Adv. High Energy Phys. 2008, 459290 (2008)Google Scholar
  29. 29.
    L. Modesto, Int. J. Theor. Phys (2010). arXiv:0811.2196 [gr-qc]
  30. 30.
    L. Modesto, I. Premont-Schwarz, Phys. Rev. D 80, 064041 (2009)CrossRefADSGoogle Scholar
  31. 31.
    S.W. Hawking, Nature 248, 30 (1974)Google Scholar
  32. 32.
    S.W. Hawking, Comm. Math. Phys. 43, 199 (1975)Google Scholar
  33. 33.
    J. Mureika, P. Nicolini, Eur. Phys. J. Plus 128, 78 (2013)CrossRefGoogle Scholar
  34. 34.
    I. Maximiliano, J. Mureika, P. Nicolini, JHEP 1311, 139 (2013)ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyQueen Mary University of LondonLondonUK

Personalised recommendations