Advertisement

Higher Spin AdS/CFT Correspondence and Quantum Gravity Aspects of AdS/CFT

  • Martin AmmonEmail author
Chapter
Part of the Springer Proceedings in Physics book series (SPPHY, volume 170)

Abstract

The AdS/CFT correspondence is one of the most fascinating developments in theoretical physics of the past two decades. Using it we can get useful insights into quantum gravity aspects of non-perturbative string theory. Here, we will mainly focus on AdS/CFT dualities relating CFTs in two dimensions to higher spin gravity in three dimensions. These dualities are interesting toy-models of AdS/CFT since explicit computations can be performed on both sides and since higher spin gravity may arise as the tensionless limit of string theory. In particular, we discuss (quantum) gravity aspects of three-dimensional higher spin gravity focussing on black holes with higher spin charge. We show that due to higher spin gauge transformations the notion of an event-horizon and singularities is gauge-dependent. Moreover, we discuss how scalar correlation functions behave in this background and how a concept of spacetime may be deduced from entanglement entropy.

Keywords

Black Hole High Spin Entanglement Entropy Wilson Line High Spin Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work reviewed was done in collaboration with A. Castro, M. Gutperle, N. Iqbal, P. Kraus and E. Perlmutter. M. Ammon is grateful to the organizers of the 2013 Karl-Schwarzschild Meeting for providing a very stimulating conference.

References

  1. 1.
    J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200
  2. 2.
    E. Witten, Adv. Theor. Math. Phys. 2, 505–532 (1998). arXiv:hep-th/9803131
  3. 3.
    S. Hawking, Commun. Math. Phys. 43, 199–220 (1975)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    S. Hawking, Phys. Rev. D 14, 2460–2473 (1976)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    A. Almheiri, D. Marolf, J. Polchinski, J. Sully, JHEP 1302, 062 (2013)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    E. Fradkin, M.A. Vasiliev, Nucl. Phys. B 291, 141 (1987)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    M.A. Vasiliev, Phys. Lett. B 243, 378–382 (1990)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    X. Bekaert, S. Cnockaert, C. Iazeolla, M. Vasiliev. arXiv:hep-th/0503128
  9. 9.
    J.D. Brown, M. Henneaux, Commun. Math. Phys. 104, 207–226 (1986)MathSciNetCrossRefADSzbMATHGoogle Scholar
  10. 10.
    A. Campoleoni, S. Fredenhagen, S. Pfenninger, S. Theisen, JHEP 1011, 007 (2010)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    M. Ammon, M. Gutperle, P. Kraus, E. Perlmutter, JHEP 1110, 053 (2011)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    A. Campoleoni, S. Fredenhagen, S. Pfenninger, JHEP 1109, 113 (2011)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    M. Henneaux, S.-J. Rey, JHEP 1012, 007 (2010)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    M. Ammon, P. Kraus, E. Perlmutter, JHEP 1207, 113 (2012)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    M.R. Gaberdiel, R. Gopakumar, Phys. Rev. D 83, 066007 (2011)CrossRefADSGoogle Scholar
  16. 16.
    E. Perlmutter, T. Prochazka, J. Raeymaekers, JHEP 1305, 007 (2013)CrossRefADSGoogle Scholar
  17. 17.
    M.R. Gaberdiel, T. Hartman, JHEP 1105, 031 (2011)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    M.R. Gaberdiel, R. Gopakumar, T. Hartman, S. Raju, JHEP 1108, 077 (2011)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    C.-M. Chang, X. Yin, JHEP 1210, 024 (2012)CrossRefADSGoogle Scholar
  20. 20.
    E. Hijano, P. Kraus, E. Perlmutter, JHEP 1305, 163 (2013)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    A. Castro, R. Gopakumar, M. Gutperle, J. Raeymaekers, JHEP 1202, 096 (2012)MathSciNetADSGoogle Scholar
  22. 22.
    M. Ammon, M. Gutperle, P. Kraus, E. Perlmutter, J. Phys. A 46, 214001 (2013)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    M. Banados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69, 1849–1851 (1992)MathSciNetCrossRefADSzbMATHGoogle Scholar
  24. 24.
    M. Gutperle, P. Kraus, JHEP 1105, 022 (2011)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    A. Castro, E. Hijano, A. Lepage-Jutier, A. Maloney, JHEP 1201, 031 (2012)MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    M.R. Gaberdiel, T. Hartman, K. Jin, JHEP 1204, 103 (2012)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    P. Kraus, E. Perlmutter, JHEP 1302, 096 (2013)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    M.R. Gaberdiel, K. Jin, E. Perlmutter, JHEP 1310, 045 (2013)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    M. Ammon, A. Castro, N. Iqbal, JHEP 1310, 110 (2013)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    J. de Boer, J.I. Jottar. arXiv:1306.4347

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Theoretisch-Physikalisches InstitutFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations