Advertisement

Tidally Distorted Black Holes

  • Norman GürlebeckEmail author
Chapter
Part of the Springer Proceedings in Physics book series (SPPHY, volume 170)

Abstract

According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical realistic scenarios often violated, e.g., if the black hole is part of a binary system or if they are surrounded by an accretion disk. In these cases, the black hole is distorted due to tidal forces. We show that the subsequent formulation of the no-hair theorem holds nonetheless: The contribution of the distorted black hole to the multipole moments that describe the gravitational field close to infinity is that of a Schwarzschild black hole. This implies that there is no multipole moment induced in the black hole and that its second Love numbers, which measure the distortion, vanish as was already shown in approximations to general relativity. But here we proof this property of black holes in full general relativity.

Notes

Acknowledgments

I thank Abhay Ashtekar for pointing out this interesting question. I also thank J. Steinhoff for fruitful discussions. Furthermore, I gratefully acknowledge support from the DFG within the Research Training Group 1620 “Models of Gravity”.

References

  1. 1.
    A. Ashtekar, B. Krishnan, Isolated and dynamical horizons and their applications. Living Rev. Relat. 7(10) (2004). http://www.livingreviews.org/lrr-2004-10
  2. 2.
    J.M. Bardeen, Rapidly rotating stars, disks, and black holes, in Black Holes (Les Astres Occlus), eds. by C. Dewitt, B.S. Dewitt (1973)Google Scholar
  3. 3.
    T. Binnington, E. Poisson, Relativistic theory of tidal love numbers. Phys. Rev. D 80, 084018 (2009)CrossRefADSGoogle Scholar
  4. 4.
    B. Carter, Black hole equilibrium states, in Black Holes (Les Astres Occlus), eds. by C. Dewitt, B.S. Dewitt (1973), pp. 57–214Google Scholar
  5. 5.
    S. Chakrabarti, T. Delsate, J. Steinhoff, New perspectives on neutron star and black hole spectroscopy and dynamic tides. arXiv:1304.2228 [gr-qc]
  6. 6.
    S. Chakrabarti, T. Delsate, N. Gürlebeck, J. Steinhoff, I-Q relation for rapidly rotating neutron stars. Phys. Rev. Lett. 112, 201102 (2014)Google Scholar
  7. 7.
    T. Damour, O.M. Lecian, Gravitational polarizability of black holes. Phys. Rev. D 80, 044017 (2009)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    T. Damour, A. Nagar, Relativistic tidal properties of neutron stars. Phys. Rev. D 80, 084035 (2009)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    D.D. Doneva, S.S. Yazadjiev, N. Stergioulas, K.D. Kokkotas, Astrophys. J. Lett. 781, L6 (2014)Google Scholar
  10. 10.
    E. Flanagan, T. Hinderer, Constraining neutron star tidal love numbers with gravitational wave detectors. Phys. Rev. D 77, 021502(R) (2008)CrossRefADSGoogle Scholar
  11. 11.
    G. Fodor, C. Hoenselaers, Z. Perjés, Multipole moments of axisymmetric systems in relativity. J. Math. Phys. 30, 2252 (1989)zbMATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    R. Geroch, J.B. Hartle, Distorted black holes. J. Math. Phys. 23, 680 (1982)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    N. Gürlebeck, Source integrals for multipole moments of static and axially spacetimes. Phys. Rev. D 90, 024041 (2014)Google Scholar
  14. 14.
    N. Gürlebeck, Phys. Rev. Lett. 114, 151102 (2015)Google Scholar
  15. 15.
    B. Haskell, R. Ciolfi, F. Pannarale, L. Rezzolla, On the universality of I-Love-Q relations in magnetized neutron stars. MNRAS Lett. 438, L71-L75 (2014)Google Scholar
  16. 16.
    T. Hinderer, Tidal love numbers of neutron stars. Astrophys. J. 677, 1216 (2008). Erratum. Astrophys. J. 697, 964 (2009)Google Scholar
  17. 17.
    B. Kol, M. Smolkin, Black hole stereotyping: induced gravito-static polarization. JHEP 2, 10 (2012)CrossRefADSGoogle Scholar
  18. 18.
    A. Love, Some Problems of Geodynamics (Cornell University Library, Ithaca, 1911)zbMATHGoogle Scholar
  19. 19.
    A. Maselli, V. Cardoso, V. Ferrari, L. Gualtieri, P. Pani, Equation-of-state-independent relations in neutron stars. Phys. Rev. D 88, 023007 (2013)CrossRefADSGoogle Scholar
  20. 20.
    H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003)zbMATHCrossRefGoogle Scholar
  21. 21.
    K. Yagi, N. Yunes, I-Love-Q. Sci. 341, 365 (2013)Google Scholar
  22. 22.
    K. Yagi, N. Yunes, I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves, and fundamental physics. Phys. Rev. D 88, 023009 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Zentrum für angewandte Raumfahrttechnologie und MikrogravitationUniversität BremenBremenGermany

Personalised recommendations