Skip to main content

Multilevel Computational Modelling in Epilepsy: Classical Studies and Recent Advances

Part of the Springer Series in Computational Neuroscience book series (NEUROSCI,volume 14)

Abstract

In this chapter we present a review of computational models for studying the dynamic mechanisms that describe the function of the human brain, with a specific focus on epilepsy. Epilepsy is a neurological disorder characterised by an increased likelihood of recurrent seizures, which in turn are characterised by transient, pathological episodes of hypersynchronised neural activity resulting in a variety of behavioural symptoms. Our chapter introduces some of the key concepts of epilepsy from a clinical perspective, before describing some of the classical approaches to modelling brain activity across multiple levels of description. We then focus on how these models have been used to explain and predict experimental and clinical phenomena within the field of epilepsy research. Here we focus on techniques that seek to integrate computational modelling with experimental and clinical measures, as we believe this “systems approach” to epilepsy research is from where the most significant new advances, particularly with regards model validation, will occur. We highlight some of the key studies, as well as emphasising more recent breakthroughs to provide a useful entry point into this rapidly expanding field of research.

Keywords

  • Epilepsy
  • Networks
  • Seizures
  • Microscale
  • Neurons

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-20037-8_7
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-20037-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 7.1

References

  1. Abbott LF. Lapique’s introduction of the integrate-and-fire model neuron (1907). Brain Res Bull. 1999;50:303–4.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Amari S. Homogeneous nets of neuron-like elements. Biol Cybern. 1975;17:211–20.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Anderson WS, Azhar F, Kudela P, Bergey GK, Franaszczuk PJ. Epileptic seizures from abnormal networks: why some seizures defy predictability. Epilepsy Res. 2012;99:202–13.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  4. Badawy RAB, Freestone DR, Lai A, Cook MJ. Epilepsy: ever-changing states of cortical excitability. Neuroscience. 2012;222:89–99.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Balazsi G, Cornell-Bell A, Neiman AB, Moss F. Synchronization of hyperexcitable´ systems with phase-repulsive coupling. Phys Rev E. 2001;64:041912.

    CAS  CrossRef  Google Scholar 

  6. Barnett L, Seth AK. The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference. J Neurosci Methods. 2014;223:50–68.

    PubMed  CrossRef  Google Scholar 

  7. Benayoun M, Cowan J.D, van Drongelen W, Wallace E. Avalanches in a stochastic model of spiking neurons. PLoS Comput Biol. 2010;6:e1000846.

    PubMed Central  PubMed  CrossRef  CAS  Google Scholar 

  8. Benjamin O, Fitzgerald THB, Ashwin P, Tsaneva-Atanasova K, Chowdhury F, Richardson MP, Terry JR. A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy. J Math Neurosci. 2012;2:1.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  9. Berg AT. Risk of recurrence after a first unprovoked seizure. Epilepsia. 2008;49:13–8.

    PubMed  CrossRef  Google Scholar 

  10. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, Engel J, French J, Glauser TA, Mathern GW, Moshe SL, Nordli D, Plouin P, Scheffer´ IE. Revised terminology and concepts for organization of seizures and epilepsies. Epilepsia. 2010;51:676–85.

    PubMed  CrossRef  Google Scholar 

  11. Berg AT, Scheffer IE. New concepts in classification of the epilepsies: entering the 21st century. Epilepsia. 2011;52:1058–62.

    PubMed  CrossRef  Google Scholar 

  12. Berger H. Uber das Elektrenkephalogramm des Menschen. Archiv f¨ ur Psychiatrie und Ner-¨ venkrankheiten. 1929;87:527–70.

    CrossRef  Google Scholar 

  13. Blenkinsop A, Valentin A, Richardson MP, Terry JR. The dynamic evolution of focalonset epilepsies: combining theoretical and clinical observations. Eur J Neurosci. 2012;36:2188–200.

    PubMed  CrossRef  Google Scholar 

  14. Blumenfeld H. Cellular and network mechanisms of spike-wave seizures. Epilepsia. 2005;46:21–33.

    CAS  PubMed  CrossRef  Google Scholar 

  15. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U. Complex networks: structure and dynamics. Phys Rep. 2006;424:175–308.

    CrossRef  Google Scholar 

  16. Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex. 2006;16:1296–313.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Bressloff PC, Coombes S. Physics of the extended neuron. Int J Modern Phys B. 1997;11:2343–92.

    CrossRef  Google Scholar 

  18. Bressloff PC. Spatiotemporal dynamics of continuum neural fields. J Phys A Math Theor. 2012;45:033001.

    CrossRef  Google Scholar 

  19. Buszaki G. The thalamic clock: emergent network properties. Neuroscience. 1991;41:351–64.

    CrossRef  Google Scholar 

  20. Buszaki G. Rhythms of the brain. Oxford: Oxford University Press; 2006.

    CrossRef  Google Scholar 

  21. Chavez M, Martinerie J, Le Van Quyen M. Statistical assessment of nonlinear causality:´ application to epileptic EEG signals. J Neurosci Methods. 2003;124:113–28.

    PubMed  CrossRef  Google Scholar 

  22. Chahboune H, Mishra AM, DeSalvo MN, Staib LH, Pucaro M, Scheinost D, Papademetris X, Fyson SJ, Lorincz ML, Crunelli V, Hyder F, Blumenfeld H. DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy. NeuroImage. 2009;47:459–66.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  23. Coenen AM, van Luijtelaar EL. Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet. 2003;33:635–55.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Connor JA, Stevens CF. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol. 1971;213:31–53.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  25. Coombes S. Waves, bumps, and patterns in neural field theories. Biol Cybernet. 2005;93:91–108.

    CAS  CrossRef  Google Scholar 

  26. Coombes S. Large-scale neural dynamics: simple and complex. NeuroImage. 2010;52:731–9.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Coombes S, Terry JR. The dynamics of neurological disease: integrating computational, experimental and clinical neuroscience. Eur J Neurosci. 2012;36:2118–20.

    PubMed  CrossRef  Google Scholar 

  28. Coombes S, Venkov NA, Shiau L, Bojak I, Liley DTJ, Laing CR. Modeling electrocortical activity through improved local approximations of integral neural field equation. Phys Rev E. 2007;76:051901–8.

    CAS  CrossRef  Google Scholar 

  29. David O, Friston KJ. A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage. 2003;20:1743–1755.

    PubMed  CrossRef  Google Scholar 

  30. Dayan P, Abbott LF. Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: MIT Press; 2001.

    Google Scholar 

  31. Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K. The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol. 2008;4:e1000092.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  32. Destexhe A. Spike-and-wave oscillations based on the properties of GABAB receptors. J Neurosci. 1998;18:9099–111.

    CAS  PubMed  Google Scholar 

  33. Destexhe A. Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? Eur J Neurosci. 1999;11:2175–81.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Destexhe A, Sejnowski TJ. Thalamocortical assemblies. Oxford: Oxford University Press; 2001.

    Google Scholar 

  35. Destexhe A, Sejnowski TJ. The Wilson-Cowan model, 36 years later. Biol Cybernet. 2009;101:1–2.

    CrossRef  Google Scholar 

  36. Destexhe A, Contreras D, Steriade M. LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing. 2001;38:555–63.

    CrossRef  Google Scholar 

  37. Drongelen W. van, Lee HC, Hereld M, Chen Z, Elsen FP, Stevens RL. Emergent epileptiform activity in neural networks with weak excitatory synapses. IEEE Trans Neural Syst Rehabil. 2005;13:236–24.

    CrossRef  Google Scholar 

  38. Engel J, Thompson PM, Stern JM, Staba RJ, Bragin A, Mody I. Connectomics and epilepsy. Curr Opin Neurol. 2013;26:186–94.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  39. Ermentrout GB, Terman DH. Mathematical foundations of neuroscience. Berlin: Springer; 2010.

    CrossRef  Google Scholar 

  40. Fact Sheet 999 Epilepsy. World Health Organization. 2012. Available via World Health Organization. http://www.who.int/mediacentre/factsheets/fs999/en/ Cited 13 Jan 2014

  41. Faugeras O, Touboul J, Cessac B. A constructive mean field analysis of multi population neural networks with random synaptic weights and stochastic inputs. Front Comput Neurosci. 2009;3:0808.1113.

    Google Scholar 

  42. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J. Jr. Comment on epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46:1698–9.

    CrossRef  Google Scholar 

  43. Fisher RS, et al. A practical clinical definition of epilepsy. Epilepsia. 2014;55:475–82.

    PubMed  CrossRef  Google Scholar 

  44. FitzHugh R. Mathematical models of threshold phenomena in the nerve membrane. Bull Math Biophys. 1955;17:257–78.

    CrossRef  Google Scholar 

  45. Freeman WJ. Mass action in the nervous system. New York: Academic; 1975.

    Google Scholar 

  46. Freeman WJ, Rogers LJ, Holmes MD, Silbergeld DL. Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. Epilepsia. 2000;95:111–21.

    CAS  Google Scholar 

  47. Freestone DR, Aram P, Dewar M, Scerri K, Grayden DB, Kadirkamanathan V. A data-driven framework for neural field modeling. NeuroImage. 2011;56:1043–58.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Freestone DR, Kuhlmann L, Grayden DB, Burkitt AN, Lai A, Nelson TS, Vogrin S, Murphy M, DSouza W, Badawy R, Nesic D, Cook MJ. Electrical probing of cortical excitability in patients with epilepsy. Epilepsy Behav. 2011;22:110–8.

    CrossRef  Google Scholar 

  49. Freestone DR, Kuhlmann L, Chong MS, Grayden DB, Aram P, Postoyan R, Cook MJ. Patient-specific neural mass modeling: stochastic and deterministic methods. In: Tetzlaff R, Elger CE, Lehnertz K, editors. Recent advances in predicting and preventing epileptic seizures. Singapore: World Scientific Publishing Co. http://www.worldscientific.com/worldscibooks/10.1142/8886; 2013.

  50. Friston K, Moran R, Seth AK. Analyzing connectivity with Granger causality and dynamic causal modelling. Curr Opin Neurobiol. 2013;23:1–7.

    CrossRef  CAS  Google Scholar 

  51. Goodfellow M, Schindler K, Baier G. Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass model. NeuroImage. 2011;55:920–32.

    PubMed  CrossRef  Google Scholar 

  52. Goodfellow M, Taylor P, Wang Y, Garry D, Baier G. Modelling the role of tissue heterogeneity in epileptic rhythms. Eur J Neurosci. 2012;36:2178–87.

    PubMed  CrossRef  Google Scholar 

  53. Goodfellow M, Schindler K, Baier G. Self-organized transients in a neural mass model of epileptogenic tissue dynamics. NeuroImage. 2012;59:2644–60.

    PubMed  CrossRef  Google Scholar 

  54. Goodfellow M, Glendinning P. Mechanisms of intermittent state transitions in a coupled heterogeneous oscillator model of epilepsy. J Math Neurosci. 2013;3:17.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  55. Grimbert F, Faugeras O. Bifurcation analysis of Jansen’s neural mass model. Neural Comput. 2006;18:3052–68.

    PubMed  CrossRef  Google Scholar 

  56. Hall D, Kuhlmann L. Mechanisms of seizure propagation in 2-dimensional centre-surround recurrent networks. PLoS ONE. 2013;8:e71369.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  57. Hindriks R, Meijer HGE, van Gils SA, van Putten MJAM. Phase-locking of epileptic spikes to ongoing delta oscillations in non-convulsive status epilepticus. Front Syst Neurosci. 2013;7:111.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  58. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117:500–44.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  59. Howard P, Twycross R, Shuster J, Mihalyo M, Remi J, Wilcock A. Anti-epileptic´ Drugs. J Pain Symptom Manage. 2011;42:788–804.

    PubMed  CrossRef  Google Scholar 

  60. Izhikevich EM. Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT Press; 2007.

    Google Scholar 

  61. Jansen BH, Rit VG. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybernet. 1995;73:357–66.

    CAS  CrossRef  Google Scholar 

  62. Jirsa VK, Haken H. A derivation of a macroscopic field theory of the brain from the quasimicroscopic neural dynamics. Physica D. 1997;99:503–26.

    CrossRef  Google Scholar 

  63. Jirsa VK, Jantzen KJ, Fuchs A, Kelso JAS. Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Trans Med Imaging. 2002;21:493–504.

    PubMed  CrossRef  Google Scholar 

  64. Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure dynamics. Brain 2014;137(Pt 8):2210–30. doi:10.1093/brain/awu133

    Google Scholar 

  65. Jiruska P, de Curtis M, Jefferys JGR, Schevon CA, Schiff SJ, Schindler K. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol. 2013;591:787–97.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  66. Joels M. Stress, the hippocampus, and epilepsy. Epilepsia. 2009;50:586–97.

    PubMed  CrossRef  Google Scholar 

  67. Kalamangalam GP, Tandon N, Slater JD. Dynamic mechanisms underlying afterdischarge: a human subdural recording study. Clin Neurophysiol. 2014;125:1324–38.

    PubMed  CrossRef  Google Scholar 

  68. Kalitzin SN, Velis DN, Lopes da Silva FH. Stimulation-based anticipation and control of state transitions in the epileptic brain. Epilepsy Behav. 2010;17:310–23.

    PubMed  CrossRef  Google Scholar 

  69. Kalitzin SN, Koppert M, Petkov G, Velis DN, Lopes da Silva FH. Computational model prospective on the observation of proictal states in epileptic neuronal systems. Epilepsy Behav. 2011;22:102–9.

    CrossRef  Google Scholar 

  70. Kandel E, Schwartz J, Jessel TM. Principles of neural science. New York: Elsevier; 1991.

    Google Scholar 

  71. Kuramoto Y. Chemical oscillations, waves and turbulence. Berlin: Springer; 1984.

    CrossRef  Google Scholar 

  72. Lehnertz K. Epilepsy and nonlinear dynamics. J Biol Phys. 2008;34:253–66.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  73. Lehnertz K, Ansmann G, Bialonski S, Dickten H, Geier C, Porz S. Evolving networks in the human epileptic brain. Physica D. 2014;267:7–15.

    CrossRef  Google Scholar 

  74. Liao W, Zhang Z, Mantini D, Xu Q, Ji G, Zhang H, Wang J, Wang Z, Chen G, Tian L, Jiao Q, Zang Y, Lu G. Dynamical intrinsic functional architecture of the brain during absence seizures. Brain Struct Funct. 2014. doi: 10.1007/s00429-013-0619-2

    Google Scholar 

  75. Liley DTJ, Cadusch PJ, Dafilis MP. A spatially continuous mean field theory of electrocortical activity. Netw Comput Neural Syst. 2002;13:67–113.

    CrossRef  Google Scholar 

  76. Liley DTJ, Bojak I. Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. J Clin Neurophysiol. 2005;22:300–13.

    CAS  PubMed  Google Scholar 

  77. Lopes da Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN. Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans Biomed Eng. 2003;50:540–8.

    CrossRef  Google Scholar 

  78. Lytton WW. Computer modelling of epilepsy. Nat Rev Neurosci. 2008;9:626–37.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  79. Maneshi M, Moeller F, Fahoum F, Gotman J, Grova C. Resting-state connectivity of the sustained attention network correlates with disease duration in idiopathic generalized epilepsy. PLoS ONE. 2012;7:e50359.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  80. Markram H. The blue brain project. Nat Rev Neurosci. 2006;7:153–60.

    CAS  PubMed  CrossRef  Google Scholar 

  81. Marten F, Rodrigues S, Benjamin O, Richardson MP, Terry JR. Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos Trans A Math Phys Eng Sci. 2009;367:1145–61.

    PubMed  CrossRef  Google Scholar 

  82. Marten F, Rodrigues S, Suffczynski P, Richardson MP, Terry JR. Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics. Physical Review E. 2009;79:021911.

    CrossRef  CAS  Google Scholar 

  83. Mattson RH. Overview: idiopathic generalized epilepsies. Epilepsia. 2003;44:2–6.

    PubMed  CrossRef  Google Scholar 

  84. McCormick DA, Contreras D. On the cellular and network bases of epileptic seizures. Ann Rev Physiol. 2001;63:815–46.

    CAS  CrossRef  Google Scholar 

  85. Meeren HKM, Pijn JPM, Van Luijtelaar ELJM, Coenen AML, Lopes da Silva FH. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci. 2002;22:1480–95.

    CAS  PubMed  Google Scholar 

  86. Meeren H, van Luijtelaar G, Lopes da Silva FH, Coenen A. Evolving concepts on the pathophysiology of absence seizures. Arch Neurol. 2005;62:371–6.

    PubMed  CrossRef  Google Scholar 

  87. Meisel C, Storch A, Hallmeyer-Elgner S, Bullmore E, Gross T. Failure of adaptive self-organized criticality during epileptic seizure attacks. PLoS Comput Biol. 2012;8:e1002312.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  88. Milton JG. Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future. Epilepsy Behav. 2010;18:33–44.

    PubMed  CrossRef  Google Scholar 

  89. Molaee-Ardekani B, Benquet P, Bartolomei F, Wendling F. Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: from ’altered structure’ to ’dysfunction’. NeuroImage. 2010;52:1109–22.

    PubMed  CrossRef  Google Scholar 

  90. Moran R, Pinotsis DA, Friston K. Neural masses and fields in dynamic causal modeling. Front Comput Neurosci. 2013;7:57.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  91. Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the long and winding road. Brain. 2006;130:314–33.

    PubMed  CrossRef  Google Scholar 

  92. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 1981;35:192–213.

    CrossRef  Google Scholar 

  93. Mountcastle VB. The columnar organization of the neocortex. Brain. 1997;120:701–22.

    PubMed  CrossRef  Google Scholar 

  94. Murta T, Leal A, Garrido MI, Figueiredo P. Dynamic causal modelling of epileptic seizure propagation pathways: a combined EEG-fMRI study. NeuroImage. 2012;62:1634–42.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  95. Nevado-Holgado AJ, Marten F, Richardson MP, Terry JR. Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: application to epilepsy seizure evolution. NeuroImage. 2012;59:2374–92.

    PubMed  CrossRef  Google Scholar 

  96. Niedermeyer E, Lopes da Silva FH. Electroencephalography: basic principals, clinical applications, and related fields. London: Williams and Wilkins; 2005.

    Google Scholar 

  97. Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2nd ed. New York: Oxford University Press; 2006.

    CrossRef  Google Scholar 

  98. O’Hagan A. Bayesian analysis of computer code outputs: a tutorial. Reliab Eng Syst Saf. 2006;91:1290–300.

    CrossRef  Google Scholar 

  99. Osorio I, Frei MG, Sornette D, Milton J, Lai Y.-C. Epileptic seizures: quakes of the brain? Phys Rev E. 2010;82:021919.

    CrossRef  CAS  Google Scholar 

  100. Owen JA, Barreto E, Cressman JR. Controlling seizure-like events by perturbing ion concentration dynamics with periodic stimulation. PLoS ONE. 2013;8:e73820.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  101. Pellegrini A, Musgrave J, Gloor P. Role of afferent input of subcortical origin in the genesis of bilaterally synchronous epileptic discharges of feline generalized epilepsy. Exp Neurol. 1979;64:155–73.

    CAS  PubMed  CrossRef  Google Scholar 

  102. Pesce LL, Lee HC, Hereld M, Visser S, Stevens RL, Wildeman A, van Drongelen W. Large-scale modeling of epileptic seizures: scaling properties of two parallel neuronal network simulation algorithms. Comput Math Methods Med. 2013;2013:182145.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  103. Ponten SC, Douw L, Bartolomei F, Reijneveld JC, Stam CJ. Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analyses. Exp Neurol. 2009;217:197–204.

    CAS  PubMed  CrossRef  Google Scholar 

  104. Purves D, Augustine G, Fitzpatrick D, Hall W, LaMantia, A-S, White L. Neuroscience, 5th ed. Sunderland: Sinauer Associates; 2012.

    Google Scholar 

  105. Richardson MP. New observations may inform seizure models: very fast and very slow oscillations. Prog Biophys Mol Biol. 2011;105:5–13.

    PubMed  CrossRef  Google Scholar 

  106. Richardson MP. Large scale brain models of epilepsy: dynamics meets connectomics. J Neurol Neurosurg Psychiatry. 2012;83:1238–48.

    PubMed  CrossRef  Google Scholar 

  107. Robinson PA, Rennie CJ, Wright JJ. Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E. 1997;56:826–40.

    CAS  CrossRef  Google Scholar 

  108. Robinson PA, Rennie CJ, Rowe D. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E. 2002;65:041924.

    CAS  CrossRef  Google Scholar 

  109. Rodrigues S, Barton D, Szalai R, Benjamin O, Richardson MP, Terry JR. Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model. J Comput Neurosci. 2009;27:507–26.

    PubMed  CrossRef  Google Scholar 

  110. Rodrigues S, Chizhov AV, Marten F, Terry JR. Mappings between a macroscopic neural mass model and a reduced conductance-based model. Biol Cybernet. 2010;102:361–71.

    CrossRef  Google Scholar 

  111. Rodrigues S, Barton D, Marten F, Kibuuka M, Alarcon G, Richardson MP, Terry JR. A method for detecting false bifurcations in dynamical systems: application to neuralfield models. Biol Cybernet. 2010;102:145–54.

    CrossRef  Google Scholar 

  112. Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci. 2004;5:553–64.

    CAS  PubMed  CrossRef  Google Scholar 

  113. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52:1059–69.

    PubMed  CrossRef  Google Scholar 

  114. Schelter B, Timmer J, Schulze-Bonhagel A. Seizure prediction in epilepsy. Weinheim: Wiley; 2008.

    CrossRef  Google Scholar 

  115. Schiff SJ. Neural control engineering: the emerging intersection between control theory and neuroscience. Cambridge: MIT Press; 2011

    Google Scholar 

  116. Seth AK. A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods. 2010;186:262–73.

    PubMed  CrossRef  Google Scholar 

  117. Soltesz I, Staley K. (eds). Computational neuroscience in epilepsy. San Diego: Academic; 2008.

    Google Scholar 

  118. Sporns O, Tononi G, Kotter R. The human connectome: a structural description of the¨ human brain. PLoS Comput Biol. 2005;1:e42.

    PubMed Central  PubMed  CrossRef  CAS  Google Scholar 

  119. Stead M, Bower M, Brinkman BH, Lee K, Marsh WR, Meyer FB, Litt B, Van Gompel J, Worrell GA. Microseizures and the spatiotemporal scales of human partial epilepsy. Brain. 2010;133:2789–97.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  120. Stefanescu R, Shivakeshavan RG, Talathi SS. Computational models of epilepsy. Seizure. 2012;21:748–59.

    PubMed  CrossRef  Google Scholar 

  121. Suffczynski P, Kalitzin SN, Lopes Da Silva FH. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience. 2004;126:467–84.

    CAS  PubMed  CrossRef  Google Scholar 

  122. Suffczynski P, Lopes da Silva FH, Parra J, Velis DN, Bouwman BM, van Rijn CM, van Hese P, Boon P, Khosravani H, Derchansky M, Carlen P, Kalitzin SN. Dynamics of epileptic phenomena determined from statistics of ictal transitions. EEE Trans Biomed Eng. 2006;53:524–32.

    CrossRef  Google Scholar 

  123. Taylor PN, Baier G. A spatially extended model for macroscopic spike-wave discharges. J Comput Neurosci. 2011;31:679–84.

    PubMed  CrossRef  Google Scholar 

  124. Tejada J, Costa KM, Bertti P, Garcia-Cairasco N. The epilepsies: complex challenges needing complex solutions. Epilepsy Behav. 2013;26:212–28.

    PubMed  CrossRef  Google Scholar 

  125. Terry JR, Benjamin O, Richardson MP. Seizure generation: the role of nodes and networks. Epilepsia. 2012;53:166–9.

    CrossRef  Google Scholar 

  126. Traub RD, Whittington MA, Buhl EH, LeBeau FE, Bibbig A, Boyd S, Cross H, Baldeweg T. A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia. 2001;42:153–70.

    CAS  PubMed  Google Scholar 

  127. van Gils SA, van Janssens SG, Kuznetsov YA, Visser S. On local bifurcations in neural field models with transmission delays. J Math Biol. 2013;66:837–87.

    PubMed  CrossRef  Google Scholar 

  128. van Vreeswijk C, Abbott LF, Ermentrout GB. When inhibition not excitation synchronizes neural firing. J Comput Neurosci. 1994;1:313–21.

    PubMed  CrossRef  Google Scholar 

  129. Valent´ın A, Alarcon G, Garc´ ´ıa-Seoane JJ, Lacruz ME, Nayak SD, Honavar M, Selway RP, Binnie CD, Polkey CE. Single-pulse electrical stimulation identifies epileptogenic frontal cortex in the human brain. Neurology. 2005;65:426–35.

    CrossRef  Google Scholar 

  130. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2:229–39.

    CAS  PubMed  CrossRef  Google Scholar 

  131. Vincent RD, Courville A, Pineau J. A bistable computational model of recurring epileptiform activity as observed in rodent slice preparations. Neural Netw. 2011;24:526–37.

    PubMed  CrossRef  Google Scholar 

  132. Visser S, Meijer HGE, Lee HC, van Drongelen W, van Putten, MJAM, van Gils SA. Comparing epileptiform behavior of mesoscale detailed models and population models of neocortex. J Clin Neurophysiol. 2010;27:471–8.

    PubMed  CrossRef  Google Scholar 

  133. Visser S, Meijer HGE, van Putten MJAM, van Gils SA. Analysis of stability and bifurcations of fixed points and periodic solutions of a lumped model of neocortex with two delays. J Math Neurosci. 2012;2:8.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  134. Vogels TP, Rajan K, Abbott LF. Neural network dynamics. Annu Rev Neurosci. 2005;28:357376.

    CrossRef  CAS  Google Scholar 

  135. Volman V, Perc M, Bazhenov M. Gap junctions and epileptic seizures—two sides of the same coin? PLoS ONE. 2011;6:e20572.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  136. Wang Y, Goodfellow M, Taylor PN, Baier G. Phase space approach for modeling of epileptic dynamics. Phys Rev E. 2012;85:1–11.

    Google Scholar 

  137. Wendling F. Neurocomputational models in the study of epileptic phenomena. J Clin Neurophysiol. 2005;22:285–7.

    PubMed Central  PubMed  Google Scholar 

  138. Wendling F. Computational models of epileptic activity: a bridge between observation and pathophysiological interpretation. Expert Rev Neurotherapeut. 2008;8:889–96.

    CrossRef  Google Scholar 

  139. Wendling F, Bartolomei F, Bellanger JJ, Chauvel P. Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG. Clin Neurophysiol. 2001;112:1201–18.

    CAS  PubMed  CrossRef  Google Scholar 

  140. Wendling F, Bartolomei F, Bellanger JJ, Chauvel P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci. 2002;15:1499–508.

    CAS  PubMed  CrossRef  Google Scholar 

  141. Wendling F, Bartolomei F, Senhadji L. Spatial analysis of intracerebral EEG in the time and frequency domain: identification of epileptogenic networks in partial epilepsy. Philos T Roy Soc A. 2009;367:297–316.

    CrossRef  Google Scholar 

  142. Wendling F, Bartolomei F, Mina F, Huneau C, Benquet P. Interictal spikes, fast ripples and seizures in partial epilepsies: combining multi-level computational models with experimental data. Eur J Neurosci. 2012;36:2164–77.

    PubMed  CrossRef  Google Scholar 

  143. Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972;12:1–24.

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  144. Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik. 1973;13:55–80.

    CAS  PubMed  CrossRef  Google Scholar 

  145. Worrell GA, Stephen CA, Cranstoun SD, Litt B, Echauz J. Evidence for selforganized criticality in human epileptic hippocampus. Expert Rev Neuroreport. 2002;13:2017–21.

    CrossRef  Google Scholar 

  146. Wyllie E, Comair YG, Kotagal P, Bulacio J, Bingaman W, Ruggieri P. Seizure outcome after epilepsy surgery in children and adolescents. Ann Neurol. 1998;44:740–8.

    CAS  PubMed  CrossRef  Google Scholar 

  147. Yan B, Li P. The emergence of abnormal hypersynchronization in the anatomical structural network of human brain. NeuroImage. 2013;65:34–51.

    PubMed  CrossRef  Google Scholar 

  148. Ziburkus J, Cressman JR, Schiff SJ. Seizures as imbalanced up states: excitatory andˇ inhibitory conductances during seizure-like events. J Neurophysiol. 2013;109:1296–306.

    PubMed Central  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

Wessel Woldman was supported by a PhD studentship awarded by the College of Engineering Mathematics and Computer Science. Financial support of the Medical Research Council of the United Kingdom via grant MR/K013996/1 and Epilepsy Research UK via grant P1203 is acknowledged. We thank Simon Todd for useful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wessel Woldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Woldman, W., Terry, J. (2015). Multilevel Computational Modelling in Epilepsy: Classical Studies and Recent Advances. In: Bhattacharya, B., Chowdhury, F. (eds) Validating Neuro-Computational Models of Neurological and Psychiatric Disorders. Springer Series in Computational Neuroscience, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-20037-8_7

Download citation