Discovery and Validation of Biomarkers Based on Computational Models of Normal and Pathological Hippocampal Rhythms

  • Péter ÉrdiEmail author
  • Tibin John
  • Tamás Kiss
  • Colin Lever
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 14)


Quantitative systems pharmacology is an emerging field with the goal of offering new methodologies for drug discovery based on concepts that grew out of systems theory. Oscillation is a central topic of dynamical systems theory, and neural oscillations are related to both normal and pathological behavior. The role of abnormal neural oscillation in several dynamical diseases is briefly reviewed. Two special cases were investigated. The possible mechanisms of anxiolytic drugs on hippocampal electric patterns were analyzed by combined physiological and computational methods. A network of neuron populations that generates septo-hippocampal theta rhythm was modeled using a compartmental modeling technique. The effects of cellular and synaptic parameters were studied. Pyramidal hyperpolarization-activated (I h ) conductance and decay time constant of inhibitory post-synaptic current have significant effects on frequency. A biophysically realistic model of the electrical activity of the hippocampus, an early target of Alzheimer’s disease is also manipulated on a synaptic and cellular level to simulate biochemical effects of amyloid-\(\beta \) accumulation. This can help elucidate a mechanism of age-dependent theta oscillation changes in AD mouse models, reflecting changes in synchronous synaptic activity that could mediate oscillation-dependent memory deficiencies and serve as a biomarker for amyloid-\(\beta \) accumulation.

Key words:

Quantitative systems pharmacology Neural oscillation Dynamical diseases Theta rhythm Anxiety Alzheimer’s disease 



PE thanks the Henry Luce Foundation for letting him serve as a Henry R. Luce Professor. TJ thanks the Heyl Science Scholarship Fund and the Barry Goldwater Scholarship Program for their support in attending Kalamazoo College. TK is a full time employee and shareholder of Pfizer Inc and is on sabbatical leave from the Wigner Research Centre for Physics of the Hungarian Academy of Sciences. Some research reported in this paper was supported by a BBSRC New Investigator grant (BB/G01342X/1 and X/2) to CL.


  1. 1.
    Aradi I, Érdi P. Computational neuropharmacology: dynamical approaches in drug discovery. Trends Pharmacol Sci. 2006;27(5):240–3.CrossRefPubMedGoogle Scholar
  2. 2.
    Aranda L, Santín LJ, Begega A, Aguirre JA, Arias JL. Supramammillary and adjacent nuclei lesions impair spatial working memory and induce anxiolitic-like behavior. Behav Brain Res. 2006;167(1):156–64.CrossRefPubMedGoogle Scholar
  3. 3.
    Arbib MA, Érdi P, Szentágothai J. Neural organization. Cambridge: MIT Press; 1997.Google Scholar
  4. 4.
    Brown P. Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr Opin Neurobiol. 2007;17:656–64.Google Scholar
  5. 5.
    Burgess N. Grid cells and theta as oscillatory interference: theory and predictions. Hippocampus 2008;18(12):1157–74.Google Scholar
  6. 6.
    Buzsaki G. Theta oscillations in the hippocampus. Neuron 2002;33:325–40.Google Scholar
  7. 7.
    Buzsaki G. Rhythms of the brain. New York: Oxford University Press; 2006.Google Scholar
  8. 8.
    Calderone DJ, Lakatos P, Butler PD, Castellanos FD. Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cognitive Sci. 2014;18:300–9.Google Scholar
  9. 9.
    Coombes S, Terry JR. The dynamics of neurological disease: integrating computational, experimental and clinical neuroscience. Eur J Neurosci. 2012;36:2118–20.Google Scholar
  10. 10.
    Crick F. Of molecules and men. Seattle: University of Washington Press; 1966.Google Scholar
  11. 11.
    Crick FH, Watson JD. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953;171:737–738.Google Scholar
  12. 12.
    de Hemptinne C, Ryapolova-Webb ES, Air EL, et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A. 2013;110:4780–5.Google Scholar
  13. 13.
    Denham MJ, Borisyuk RM. A model of theta rhythm production in the septal-hippocampal system and its modulation by ascending brain stem pathways. Hippocampus 2000;10(6):698–716.Google Scholar
  14. 14.
    Dupuy J-P. The mechanization of the mind: on the origins of cognitive science. Princeton: Princeton University Press; 2000.Google Scholar
  15. 15.
    Erdi P. Complexity explained. Heidelberg: Springer; 2007.Google Scholar
  16. 16.
    Érdi P, Kiss T, Tóth J, Ujfalussy B, Zalányi L. From systems biology to dynamical neuropharmacology: proposal for a new methodology. IEE Proc Syst Biol 2006;153(4):299–308.Google Scholar
  17. 17.
    Farmer S. Neural rhythms in Parkinson disease. Brain 2002;125(6):1175–6.Google Scholar
  18. 18.
    Ferguson KA, Skinner FK. Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: a proposal. Chaos. 2013;23:046108.Google Scholar
  19. 19.
    Finkel LH. Neuroengineering models of brain disease. Annu Rev Biomed Eng. 2000;2:577–606.Google Scholar
  20. 20.
    Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9:474–80.Google Scholar
  21. 21.
    Geerts H, Spiros A, Roberts P, Carr R. Quantitative systems pharmacology as an extension of pk/pd modeling in cns research and development. J Pharmacokinet Pharmacodyn. 2013;40(3):257–65.Google Scholar
  22. 22.
    Gray JA, McNaughton N. The neuropsychology of anxiety. Oxford: Oxford university press; 2000.Google Scholar
  23. 23.
    Hájos N, Freund TF, Nusser Z, Rancz EA, Mody I. Cell type- and synapse-specific variability in synaptic GABAA receptor occupancy. Eur J Neurosci 2000;12(3):810–8.Google Scholar
  24. 24.
    Hajós M, Hoffmann WE, Orbán G, Kiss T, Erdi P. Modulation of septo-hippocampal theta activity by GABAA receptors: an experimental and computational approach. Neuroscience 2004;126(3):599–610.Google Scholar
  25. 25.
    Hájos M, Morozova E, Siok C, Atchison K, Nolan CE, Riddell D, Kiss T, Hajos-Korcsok E. Effects of the \(\gamma \)-secretase inhibitor semagacestat on hippocampal neuronal network oscillation. Vol 4. 2013.Google Scholar
  26. 26.
    Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12(10):383–8.Google Scholar
  27. 27.
    Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT, Kim D, et al. Transsynaptic progression of amyloid-\(\beta \)-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 2010;68(3):428–41.Google Scholar
  28. 28.
    Huh CYL, Goutagny R, Williams S. Glutamatergic neurons of the mouse medial septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: relevance for hippocampal theta rhythm. J Neurosci Off J Soc Neurosci 2010;30(47):15951–61.Google Scholar
  29. 29.
    Hulbert S, Adeli H. EEG/MEG- and imaging-based diagnosis of Alzheimer’s disease. Rev Neurosci. 2013;24:563–76.Google Scholar
  30. 30.
    Ingalls BP. Mathematical modeling in systems biology. Boston: The MIT Press; 2013.Google Scholar
  31. 31.
    Green JD, Arduini AA. Hippocampal electrical activity in arousal. J Neurophysiol. 1954;17:553–7.Google Scholar
  32. 32.
    Jeewajee A, Lever C, Burton S, OKeefe J, Burgess N. Environmental novelty is signalled by reduction of the hippocampal theta frequency. Hippocampus 2008;18(4):340–8.Google Scholar
  33. 33.
    Jensen O, Colgin LI. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11:267–9.Google Scholar
  34. 34.
    Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115:1490–505.Google Scholar
  35. 35.
    John T, Kiss T, Lever C, Érdi P. Anxiolytic drugs and altered hippocampal theta rhythms: the quantitative systems pharmacological approach. Network (Bristol, England). 2014;25(1–2):20–37.Google Scholar
  36. 36.
    Kinney GG, Patino P, Mermet-Bouvier Y, Starrett JE Jr, Gribkoff VK. Cognition-enhancing drugs increase stimulated hippocampal theta rhythm amplitude in the urethane-anesthetized rat. J Pharmacol Exp Ther. 1999;291:99–106.Google Scholar
  37. 37.
    Kirk IJ. Frequency modulation of hippocampal theta by the supramammillary nucleus, and other hypothalamo-hippocampal interactions: mechanisms and functional implications. Neurosci Biobehav Rev. 1998;22(2):291–302.Google Scholar
  38. 38.
    Kirk IJ, McNaughton N. Mapping the differential effects of procaine on frequency and amplitude of reticularly elicited hippocampal rhythmical slow activity. Hippocampus 1993;3(4):517–25.Google Scholar
  39. 39.
    Kiss T, Hoffmann WE, Hajós M. Delta oscillation and short-term plasticity in the rat medial prefrontal cortex: modelling nmda hypofunction of schizophrenia. Int J Neuropsychopharmacol. 2011;14:29–42.Google Scholar
  40. 40.
    Kocsis B, Li S. In vivo contribution of h-channels in the septal pacemaker to theta rhythm generation. Eur J Neurosci. 2004;20:2149–58.Google Scholar
  41. 41.
    Kramis R, Vanderwolf CH, Bland BH. Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behaviour and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp Neurol. 1975;49:58–85.Google Scholar
  42. 42.
    Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 2010;320:110–11.Google Scholar
  43. 43.
    Lopes da Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN. Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans Biomed Eng. 2003;50:540–8.Google Scholar
  44. 44.
    McCarthy MM, Moore-Kochlacs C, Gu X, Boyden ES, Han X, Kopell N. Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proc Nat Acad Sci U S A. 2011;108:11620–5.Google Scholar
  45. 45.
    McNaughton N, Kocsis B, Hajós M. Elicited hippocampal theta rhythm: a screen for anxiolytic and procognitive drugs through changes in hippocampal function? Behav Pharmacol. 2007;18:329–46.Google Scholar
  46. 46.
    McNaughton N, Kocsis B, Hajós M. Elicited hippocampal theta rhythm: a screen for anxi olytic and procognitive drugs through changes in hippocampal function? Behav Pharmacol. 2007;18:329–46.Google Scholar
  47. 47.
    Moran LV, Hong E. High vs low frequency neural oscillations in schizophrenia. Schizophr Bull. 2011;37:659–63.Google Scholar
  48. 48.
    Morange M. A history of molecular biology (Trans. M Cobb). Cambridge: Harvard University Press; 1998.Google Scholar
  49. 49.
    Mormann F, Kreuz T, Rieke C, Andrzejak RG, Kraskov A, David P, Elger CE, Lehnertz K. On the predictability of epileptic seizures. Clin Neurophysiol. 2005;116:569–87.Google Scholar
  50. 50.
    Mudher A, Lovestone S. Alzheimer's disease - do tauists and baptists finally shake hands? Trends Neurosci. 2002;25(1):22–26.Google Scholar
  51. 51.
    Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, Belforte JE. Gabaergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 2012;62:1574–83.Google Scholar
  52. 52.
    Noble D. Mind over molecule: systems biology for neuroscience and psychiatry. In: Tretter F, Winterer G, Gebicke-Haerter PJ, Mendoza RE, editors. Systems biology in psychiatric research. Hoboken: Wiley-Blackwell; 2010.Google Scholar
  53. 53.
    O’Keefe J, Nadel L. The hippocampus as a cognitive map. Oxford: Oxford University Press; 1978.Google Scholar
  54. 54.
    Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 2007;55(5):697–711.Google Scholar
  55. 55.
    Pitts W, McCulloch W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;7:115–33.Google Scholar
  56. 56.
    Richardson MP. New observations may inform seizure models: very fast and very slow oscillations. Prog Biophys Mol Biol. 2011;105:5–13.Google Scholar
  57. 57.
    Richardson RM. Abnormal cortical brain rhythms in Parkinson disease. Neurosurgery 2013;72:N23–4.Google Scholar
  58. 58.
    Rosen R. Anticipatory systems: philosophical, mathematical and methodological foundations. Pergamon Press; 1985.Google Scholar
  59. 59.
    Rosen R. Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life. Columbia Univ. Press; 1991.Google Scholar
  60. 60.
    Rotstein HG, Kaper TJ, Kramer MA. Introduction to focus issue: rhythms and dynamic transitions in neurological disease: modeling, computation, and experiment. Chaos 2013;23:046001.Google Scholar
  61. 61.
    Rykiel EJ Jr. Testing ecological models: the meaning of validation. Ecol Model. 1996;90(3):229–44.Google Scholar
  62. 62.
    Sainsbury RS. Hippocampal theta: a sensory-inhibition theory of function. Neurosci Biobehav Rev. 1998;22(2):237–41.Google Scholar
  63. 63.
    Sargent RG. Verification and validation of simulation models. J Simul. 2012;7(1):12–24.Google Scholar
  64. 64.
    Scott L, Feng J, Kiss T, Needle E, Atchison K, Kawabe TT, Milici AJ, Hajós-Korcsok E, Riddell D, Hajós M. Age-dependent disruption in hippocampal \(\theta \) oscillation in amyloid-\(\beta \) overproducing transgenic mice. Neurobiol Aging. 2012;33(7):13–23.Google Scholar
  65. 65.
    Seidenbecher T, Laxmi TR, Stork O, Pape HC. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 2003;301(5634):846–50.Google Scholar
  66. 66.
    Siok CJ, Taylor CP, Hajos M. Anxiolytic profile of pregabalin on elicited hippocampal theta oscillation. Neuropharmacology 2009;56:379–85.Google Scholar
  67. 67.
    Sorger PK, Allerheiligen SRB, et al. Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms. An NIH White Paper by the QSP Workshop Group; 2011.Google Scholar
  68. 68.
    Sperling RA, Laviolette PS, OKeefe K, OBrien J, Rentz DM, Pihlajamaki M, Marshall G, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 2009;63(2):178–88.Google Scholar
  69. 69.
    Traub RD, Michelson-Law H, Bibbig AE, Buhl EH, Whittington MA. Gap junctions, fast oscillations and the initiation of seizures. Adv Exp Med Biol. 2004;548:110–22.Google Scholar
  70. 70.
    Tretter F, Winterer G, Gebicke-Haerter PJ, Mendoza RE, editors. Systems biology in psychiatric research. Wiley-Blackwell; 2010.Google Scholar
  71. 71.
    Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–13.Google Scholar
  72. 72.
    Ujfalussy B, Érdi P, Kiss T. Multi-level models. In: Cutsuridis VI, Graham B, Cobb S, editor. Hippocampal microcircuits. A computational modeler’s resource book. Springer; 2010. pp. 527–554.Google Scholar
  73. 73.
    Van Regenmortel MHV. Biological complexity emerges from the ashes of genetic reductionism. J Mol Recognit. 2004;17:145–8.Google Scholar
  74. 74.
    Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969;26:407–18.Google Scholar
  75. 75.
    Vecchio F, Babiloni C, Lizio R, Fallani FV, Blinowska K, Verrienti G, Frisoni G, Rossini PM. Resting state cortical EEG rhythms in Alzheimer’s disease: toward EEG markers for clinical applications: a review. Suppl Clin Neurophysiol. 2013;62:223–36.Google Scholar
  76. 76.
    Verret L, Mann EO, Hang GB, Barth AMI, Cobos I, Ho K, Devidze N, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 2012;149(3):708–21.Google Scholar
  77. 77.
    Vertes RP. Hippocampal theta rhythm: a tag for short-term memory. Hippocampus 2005;15(7):923–35.Google Scholar
  78. 78.
    Villette V, Poindessous-Jazat F, Simon A, Léna C, Roullot E, Bellessort B, Epelbaum J, Dutar P, Stéphan A. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat. J Neurosci Off J Soc Neurosci. 2010;30(33):10991–1003.Google Scholar
  79. 79.
    Volman V, Behrens MM, Sejnowski TJ. Downregulation of parvalbumin at cortical gaba synapses reduces network gamma oscillatory activity. J Neurosci. 2011;31(49):18137–48.Google Scholar
  80. 80.
    von Bertalanff L. An outline of general system theory. Br J Philos Sci. 1950;1:114–29.Google Scholar
  81. 81.
    von der Malsburg C. Binding in models of perception and brain function. Curr Opin Neurobiol. 1995;5:520–26.Google Scholar
  82. 82.
    Wang XJ. Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. J Neurophysiol. 2002;87(2):889–900.Google Scholar
  83. 83.
    Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev. 2010;90:1195–268.Google Scholar
  84. 84.
    Wang XJ, Buzsáki G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci. 1996,16:6402–13.Google Scholar
  85. 85.
    Wells CE, Amos DP, Jeewajee A, Douchamps V, Rodgers J, O’Keefe J, Burgess N, Lever C. Novelty and anxiolytic drugs dissociate two components of hippocampal theta in behaving rats. J Neurosci. 2013;33(20):8650–67.Google Scholar
  86. 86.
    Wiener N. Cybernetics or control and communication in the animal and the machine. Cambridge: MIT Press; 1948.Google Scholar
  87. 87.
    Wolkenhauer O. Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform. 2001;2:258–70.Google Scholar
  88. 88.
    Woodnorth M-A, McNaughton N. Similar effects of medial supramammillary or systemic injection of chlordiazepoxide on both theta frequency and fixed-interval responding. Cognit Affect Behav Neurosci. 2002;2(1):76–83.Google Scholar
  89. 89.
    Yamazaki CK, Shirao T, Sasagawa Y, Maruyama Y, Akita H, Saji M, Sekino Y. Lesions of the supramammillary nucleus decrease self-grooming behavior of rats placed in an open field. Kitakanto Med J. 2011;61(2):287–92.Google Scholar
  90. 90.
    Yeung M, Dickson CT, Treit D. Intrahippocampal infusion of the ih blocker ZD7288 slows evoked theta rhythm and produces anxiolytic-like effects in the elevated plus maze. Hippocampus 2013;23(4):278–86.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Péter Érdi
    • 1
    • 2
    Email author
  • Tibin John
    • 1
  • Tamás Kiss
    • 3
    • 2
  • Colin Lever
    • 4
  1. 1.Center for Complex Systems StudiesKalamazoo CollegeKalamazooUSA
  2. 2.Institute for Particle and Nuclear Physics, Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary
  3. 3.Neuroscience Research Unit, Pfizer Global Research and DevelopmentCambridgeUSA
  4. 4.Department of PsychologyDurham UniversityDurhamUK

Personalised recommendations