Skip to main content

Computational Modeling of Fiber Composites with Thick Fibers as Homogeneous Structures with Use of Couple Stress Theory

  • Chapter
Design and Analysis of Reinforced Fiber Composites

Abstract

Unidirectional fiber-reinforced elastomers are investigated. A respective finite strain model is formulated within the couple stress theory, and a specific new form of strain energy density is implemented for the three-dimensional finite element analysis. The homogeneous anisotropic model is based on kinematics and constitutive equations proposed by Spencer and Soldatos (International Journal of Non-Linear Mechanics 42:355–368, 2007) and includes additional material parameter regulating bending stiffness of the material regardless of its tensile stiffness. The procedure of determination of the additional material parameter is offered for the case of simple beam under small strains. Numerical simulations of four-point bending test are presented to demonstrate advantage of the new model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forest, S., & Sievert, R. (2006). Nonlinear microstrain theories. International Journal of Solids and Structures, 43, 7224–7245.

    Article  MathSciNet  MATH  Google Scholar 

  2. Cosserat, E., & Cosserat, F. (1909). Théorie des corps déformables. Paris: A. Hermann et Fils.

    Google Scholar 

  3. Eringen, A. C. (1962). Nonlinear theory of continuous media. New York: McGraw-Hill.

    Google Scholar 

  4. Altenbach, J., Altenbach, H., & Eremeyev, V. A. (2010). On generalized Cosserat-type theories of plates and shells: A short review and bibliography. Archive of Applied Mechanics, 80, 73–92.

    Article  MATH  Google Scholar 

  5. Koiter, W. T. (1964). Couple stresses in the theory of elasticity I and II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 67, 17–44.

    MATH  Google Scholar 

  6. Spencer, A. J. M. (1972). Deformations of fibre-reinforced materials. London: Oxford University Press.

    MATH  Google Scholar 

  7. Forest, S., & Sab, K. (1998). Cosserat overall modelling of heterogeneous materials. Mechanics Research Communications, 25(4), 449–454.

    Article  MathSciNet  MATH  Google Scholar 

  8. de Borst, R. (1993). A generalisation of J 2 —Flow theory for polar continua. Computer Methods in Applied Mechanics and Engineering, 103, 347–362.

    Article  MATH  Google Scholar 

  9. Sansour, C., Skatulla, S., & Zbib, H. (2010). A formulation for the micromorphic continuum at finite inelastic strains. International Journal of Solids and Structures, 47, 1546–1554.

    Article  MATH  Google Scholar 

  10. Isbuga, V., & Regueiro, R. A. (2011). Three-dimensional finite element analysis of finite deformation micromorphic linear isotropic elasticity. International Journal of Engineering Science, 49, 1326–1336.

    Article  MathSciNet  Google Scholar 

  11. Tsiatas, G. C. (2009). A new Kirchhoff plate model based on a modified couple stress theory. International Journal of Solids and Structures, 46, 2757–2764.

    Article  MATH  Google Scholar 

  12. Park, S. K., & Gao, X.-L. (2006). Bernoulli–Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering, 16, 2355–2359.

    Article  Google Scholar 

  13. Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., & Tong, P. (2003). Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51, 1477–1508.

    Article  MATH  Google Scholar 

  14. Bauer, S., Schäfer, M., Grammenoudis, P., & Tsakmakis, C. (2010). Three-dimensional finite elements for large deformation micropolar elasticity. Computer Methods in Applied Mechanics and Engineering, 199, 2643–2654.

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, W., & Si, J. (2013). A model of composite laminated beam based on the global–local theory and new modified couple-stress theory. Composite Structures, 103, 99–107.

    Article  Google Scholar 

  16. Fleck, N. A., & Shu, J. Y. (1995). Microbuckle initiation in fibre composites: A finite element study. Journal of the Mechanics and Physics of Solids, 43(12), 1887–1918.

    Article  MathSciNet  MATH  Google Scholar 

  17. Spencer, A. J. M., & Soldatos, K. P. (2007). Finite deformations of fibre-reinforced elastic solid with fibre bending stiffness. International Journal of Non-Linear Mechanics, 42, 355–368.

    Article  Google Scholar 

  18. Zheng, Q.-S. (1994). Theory of representations for tensor functions. Applied Mechanics Reviews, 47, 554.

    Article  Google Scholar 

  19. Toupin, R. A. (1962). Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 11, 385.

    Article  MathSciNet  MATH  Google Scholar 

  20. Soldatos, K. P. (2013). Foundation of polar linear elasticity for fibre-reinforced materials. Journal of Elasticity, 114(2), 155–178.

    Article  MathSciNet  Google Scholar 

  21. Holzapfel, G. A. (2000). Nonlinear solid mechanics. A continuum approach for engineering. Chichester: Wiley.

    MATH  Google Scholar 

  22. Lasota, T. (2013). Computational modelling of mechanical behaviour of “elastomer-steel fibre” composite. Dissertation, Brno University of Technology, Brno.

    Google Scholar 

  23. Timmel, M., Kolling, S., & Kaliske, M. (2007). Phenomenological and micromechanical modeling of anisotropic effects in hyperelastic materials. LS-DYNA FORUM 6, Frankenthal

    Google Scholar 

  24. Soldatos, K. P. (2010). Second-gradient plane deformations of ideal fibre-reinforced materials: Implications of hyper-elasticity theory. Journal of Engineering Mathematics, 68(1), 99–127.

    Article  MathSciNet  MATH  Google Scholar 

  25. Lasota, T., Burša, J., & Fedorova, S. (2012). Constitutive equations and finite element formulation for anisotropic hyperelastic composites based on constrained Cosserat continuum. Paper presented at the European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria, September 10–14, 2012.

    Google Scholar 

  26. Huebner, K. H., Dewhirst, D. L., Smith, D. E., & Byrom, T. G. (2001). The finite element method for engineers (4th ed.). New York: Wiley-InterScience.

    Google Scholar 

  27. Su, W., & Liu, S. (2010). Size-dependent optimal microstructure design based on couple-stress theory. Structural and Multidisciplinary Optimization, 42, 243–254.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation project number 13-16304S, by faculty project number FSI-S-14-2344, and through NETME CENTRE PLUS (LO1202) by financial means from the Ministry of Education, Youth and Sports under the “National Sustainability Programme I.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svitlana Fedorova .

Editor information

Editors and Affiliations

Appendix

Appendix

The material parameter k 2 can be determined under condition that the tensile force in the direction of fiber remains the same in both the homogenous and heterogeneous models under uniaxial tension \( {P}^{\mathrm{het}}={P}^{\hom } \).

Consider \( \mathbf{A}=\left(\begin{array}{c}\hfill \mathbf{1}\hfill \\ {}\hfill \mathbf{0}\hfill \\ {}\hfill \mathbf{0}\hfill \end{array}\right) \) and uniaxial tension in the direction X 1. We consider small tensile strains in the fiber direction; therefore linearized constitutive equations might be used. \( {\sigma}_{ij}=2{F}_{ik}{F}_{jl}\frac{\partial W}{\partial {C}_{ikl}} \) is general constitutive relation for incompressible hyperelastic material (hydrostatic pressure is absent). The strain energy density is given by \( W=\frac{\mu }{2}\left({I}_1-3\right)+{k}_2{\left({I}_4-1\right)}^2 \). The right Cauchy–Green deformation tensor is \( C=\left(\begin{array}{ccc}\hfill {\lambda}_1^2\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill {\lambda}_2^2\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill {\lambda}_3^2\hfill \end{array}\right), \) and incompressibility condition holds \( {\lambda}_1{\lambda}_2{\lambda}_3=1 \), where λ 1, λ 2, λ 3 are principal stretch ratios.

Consequently, we can write that

$$ {\sigma}_{11}^{\hom }=\mu \left(2{\lambda}^2+\frac{1}{\lambda}\right)+4{k}_2\left({\lambda}^4-{\lambda}^2\right) $$
(74)

where \( \uplambda ={\uplambda}_1 \) is the stretch ratio in the direction of fiber.

For the small strains, it takes form

$$ {\sigma}_{11}^{\hom }=\left(3\mu +8{k}_2\right)\cdot {\varepsilon}_{11}={E_1}^{\hom}\cdot {\varepsilon}_{11}. $$
(75)

The tensile force acting on the section will be

$$ {P}^{\hom }={\displaystyle {\int}_S{\sigma}_{11}^{\hom }}\mathrm{d}S=S\cdot {\sigma}_{11}^{\hom }=S\cdot \left(3\upmu +8{\mathrm{k}}_2\right)\cdot {\varepsilon}_{11}. $$
(76)

As to the heterogeneous model, the tensile force in linearized case is as follows:

$$ {P}^{\mathrm{het}}={\displaystyle {\int}_S{\sigma}_{11}^{\mathrm{het}}\mathrm{d}S}=S\cdot \left(\left(1-{\psi}_{\mathrm{f}}\right)\cdot {E}_{\mathrm{m}}+{\psi}_{\mathrm{f}}\cdot {E}_{\mathrm{f}}\right)\cdot {\varepsilon}_{11}, $$
(77)

where ψ f is the fiber volume fraction and E m and E f are matrix and fiber moduli.

Consequently, we have condition

$$ \left(3\mu +8{k}_2\right)\cdot {\varepsilon}_{11}=\left(\left(1-{\psi}_{\mathrm{f}}\right)\cdot {E}_{\mathrm{m}}+{\psi}_{\mathrm{f}}\cdot {E}_{\mathrm{f}}\right)\cdot {\varepsilon}_{11}, $$
(78)

and so it follows that

$$ {k}_2=\frac{1}{8}\left(\left(1-{\psi}_f\right)\cdot {E}_m+{\psi}_f\cdot {E}_f-3\mu \right). $$
(79)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fedorova, S., Lasota, T., Burša, J. (2016). Computational Modeling of Fiber Composites with Thick Fibers as Homogeneous Structures with Use of Couple Stress Theory. In: Marcal, P., Yamagata, N. (eds) Design and Analysis of Reinforced Fiber Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-20007-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20007-1_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20006-4

  • Online ISBN: 978-3-319-20007-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics