AxTract: Microstructure-Driven Tractography Based on the Ensemble Average Propagator

  • Gabriel Girard
  • Rutger Fick
  • Maxime Descoteaux
  • Rachid Deriche
  • Demian Wassermann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9123)

Abstract

We propose a novel method to simultaneously trace brain white matter (WM) fascicles and estimate WM microstructure characteristics. Recent advancements in diffusion-weighted imaging (DWI) allow multi-shell acquisitions with b-values of up to 10,000 \(\mathrm{s/mm^2}\) in human subjects, enabling the measurement of the ensemble average propagator (EAP) at distances as short as 10 \(\mathrm{\mu m}\). Coupled with continuous models of the full 3D DWI signal and the EAP such as Mean Apparent Propagator (MAP) MRI, these acquisition schemes provide unparalleled means to probe the WM tissue in vivo. Presently, there are two complementary limitations in tractography and microstructure measurement techniques. Tractography techniques are based on models of the DWI signal geometry without taking specific hypotheses of the WM structure. This hinders the tracing of fascicles through certain WM areas with complex organization such as branching, crossing, merging, and bottlenecks that are indistinguishable using the orientation-only part of the DWI signal. Microstructure measuring techniques, such as AxCaliber, require the direction of the axons within the probed tissue before the acquisition as well as the tissue to be highly organized. Our contributions are twofold. First, we extend the theoretical DWI models proposed by Callaghan et al. to characterize the distribution of axonal calibers within the probed tissue taking advantage of the MAP-MRI model. Second, we develop a simultaneous tractography and axonal caliber distribution algorithm based on the hypothesis that axonal caliber distribution varies smoothly along a WM fascicle. To validate our model we test it on in-silico phantoms and on the HCP dataset.

References

  1. 1.
    Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J., Dyrby, T.B.: Orientationally invariant indices of axon diameter and density from diffusion MRI. NImg 42, 1374–1389 (2010)Google Scholar
  2. 2.
    Assaf, Y., Basser, P.J.: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NImg 27(1), 48–58 (2005)Google Scholar
  3. 3.
    Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J.: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. MRM 59, 1347–1354 (2008)CrossRefGoogle Scholar
  4. 4.
    Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. MRM 52, 965–978 (2004)CrossRefGoogle Scholar
  5. 5.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. MRM 44, 625–632 (2000)CrossRefGoogle Scholar
  6. 6.
    Callaghan, P.: Pulsed-Gradient Spin-Echo NMR for planar, cylindrical, and spherical pores under conditions of wall relaxation. J. Magn. Reson. Series A 13, 53–59 (1995)CrossRefGoogle Scholar
  7. 7.
    Caruyer, E., Daducci, A., Descoteaux, M., Houde, J.C., Thiran, J.P., Verma, R.: Phantomas: a flexible software library to simulate diffusion MR phantoms. In: International Symposium on Magnetic Resonance in Medicine (2014)Google Scholar
  8. 8.
    Close, T.G., Tournier, J.D., Calamante, F., Johnston, L.A., Mareels, I., Connelly, A.: A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms. NImg 47(4), 1288–1300 (2009)Google Scholar
  9. 9.
    Daducci, A., Dal Palu, A., Alia, L., Thiran, J.P.: COMMIT: convex optimization modeling for micro-structure informed tractography. IEEE Trans. Med. Imaging 34, 246–257 (2014)CrossRefGoogle Scholar
  10. 10.
    McNab, J.A., Edlow, B.L., Witzel, T., Huang, S.Y., Bhat, H., Heberlein, K., Feiweier, T., Liu, K., Keil, B., Cohen-Adad, J., Tisdall, M.D., Folkerth, R.D., Kinney, H.C., Wald, L.L.: The human connectome project and beyond: initial applications of 300 mT/m gradients. NImg 80, 234–245 (2013)Google Scholar
  11. 11.
    Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NImg 78, 16–32 (2013)Google Scholar
  12. 12.
    Ritchie, J.M.: On the relation between fibre diameter and conduction velocity in myelinated nerve fibres. In: Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain) 217(1206), 29–35 (1982)Google Scholar
  13. 13.
    Setsompop, K., Kimmlingen, R., Eberlein, E., Witzel, T., Cohen-Adad, J., McNab, J., Keil, B., Tisdall, M., Hoecht, P., Dietz, P., Cauley, S., Tountcheva, V., Matschl, V., Lenz, V., Heberlein, K., Potthast, A., Thein, H., Horn, J.V., Toga, A., Schmitt, F., Al, E.: Pushing the limits of in vivo diffusion MRI for the human connectome project. NImg 80, 220–233 (2013)Google Scholar
  14. 14.
    Sherbondy, A.J., Rowe, M.C., Alexander, D.C.: MicroTrack: an algorithm for concurrent projectome and microstructure estimation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 183–190 (2010)Google Scholar
  15. 15.
    Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)CrossRefGoogle Scholar
  16. 16.
    Tristán-Vega, A., Westin, C.F., Aja-Fernández, S.: Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging. NImg 47, 638–650 (2009)Google Scholar
  17. 17.
    Tuch, D.: Q-ball imaging. MRM 52, 1358–1372 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gabriel Girard
    • 1
    • 2
  • Rutger Fick
    • 1
  • Maxime Descoteaux
    • 2
  • Rachid Deriche
    • 1
  • Demian Wassermann
    • 1
  1. 1.Athena Project-TeamINRIA Sophia Antipolis - MéditerranéeSophia AntipolisFrance
  2. 2.Sherbrooke Connectivity Imaging Lab (SCIL) Computer Science DepartmentUniversité de SherbrookeSherbrookeCanada

Personalised recommendations