Fast Optimal Transport Averaging of Neuroimaging Data

Conference paper

DOI: 10.1007/978-3-319-19992-4_20

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9123)
Cite this paper as:
Gramfort A., Peyré G., Cuturi M. (2015) Fast Optimal Transport Averaging of Neuroimaging Data. In: Ourselin S., Alexander D., Westin CF., Cardoso M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science, vol 9123. Springer, Cham


Knowing how the Human brain is anatomically and functionally organized at the level of a group of healthy individuals or patients is the primary goal of neuroimaging research. Yet computing an average of brain imaging data defined over a voxel grid or a triangulation remains a challenge. Data are large, the geometry of the brain is complex and the between subjects variability leads to spatially or temporally non-overlapping effects of interest. To address the problem of variability, data are commonly smoothed before performing a linear group averaging. In this work we build on ideas originally introduced by Kantorovich [18] to propose a new algorithm that can average efficiently non-normalized data defined over arbitrary discrete domains using transportation metrics. We show how Kantorovich means can be linked to Wasserstein barycenters in order to take advantage of the entropic smoothing approach used by [7]. It leads to a smooth convex optimization problem and an algorithm with strong convergence guarantees. We illustrate the versatility of this tool and its empirical behavior on functional neuroimaging data, functional MRI and magnetoencephalography (MEG) source estimates, defined on voxel grids and triangulations of the folded cortical surface.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut Mines-Télécom, Telecom ParisTechCNRS LTCIParisFrance
  2. 2.NeuroSpinCEA SaclayGif-sur-YvetteCedex France
  3. 3.CNRS and CEREMADEUniversité Paris-DauphineParisFrance
  4. 4.Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations