Status of Higgs Physics

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The analysis presented in this thesis has found significant experimental evidence for the process Open image in new window.

References

  1. 1.
    ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]
  2. 2.
    CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]
  3. 3.
    CDF, D0 Collaborations, Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the tevatron. Phys. Rev. Lett. 109, 071804 (2012). arXiv:1207.6436 [hep-ex]
  4. 4.
    ATLAS Collaboration, Measurement of Higgs boson production in the diphoton decay channel in \(pp\) collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector. (2014). arXiv:1408.7084 [hep-ex] (submitted to Phys. Rev. D)
  5. 5.
    ATLAS Collaboration, Measurements of Higgs boson production and couplings in the four-lepton channel in \(pp\) collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector. (2014). arXiv:1408.5191 [hep-ex] (submitted to Phys. Rev. D)
  6. 6.
    ATLAS Collaboration, Measurement of the Higgs boson mass from the \(H\rightarrow \gamma \gamma \) and \(H \rightarrow ZZ^{*} \rightarrow \mathit{4}\ell \) channels with the ATLAS detector using 25 fb\(^{-1}\) of \(pp\) collision data. (2014). arXiv:1406.3827 [hep-ex] (accepted by Phys. Rev. D)
  7. 7.
    CMS Collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV. CMS-PAS-HIG-13-005 (2013)Google Scholar
  8. 8.
    CMS Collaboration, Observation of the diphoton decay of the Higgs boson and measurement of its properties (2014). arXiv:1407.0558 [hep-ex] (submitted to Eur. Phys. J. C)
  9. 9.
    CMS Collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89, 092007 (2014). arXiv:1312.5353 [hep-ex]
  10. 10.
    CMS Collaboration, Measurement of Higgs boson production and properties in the \(WW\) decay channel with leptonic final states. JHEP 1401, 096 (2014). arXiv:1312.1129 [hep-ex]
  11. 11.
    CMS Collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of \(\tau \) leptons. JHEP 1405, 104 (2014). arXiv:1401.5041 [hep-ex]
  12. 12.
    CMS Collaboration, Search for the standard model Higgs boson produced in association with a \(W\) or a \(Z\) boson and decaying to bottom quarks. Phys. Rev. D 89, 012003 (2014). arXiv:1310.3687 [hep-ex]
  13. 13.
    ATLAS Collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb\(^{-1}\) of proton-proton collision data, ATLAS-CONF-2014-009 (2014)Google Scholar
  14. 14.
    ATLAS Collaboration, Search for Higgs boson decays to a photon and a \(Z\) boson in \(pp\) collisions at \(\sqrt{s} = \rm 7\) and 8 TeV with the ATLAS detector. Phys. Lett. B 732, 8 (2014). arXiv:1402.3051 [hep-ex]
  15. 15.
    ATLAS Collaboration, Search for the Standard Model Higgs boson decay to \(\mu ^{+}\mu ^{-}\) with the ATLAS detector (2014). arXiv:1406.7663 [hep-ex] (accepted by Phys. Lett. B)
  16. 16.
    ATLAS Collaboration, Search for invisible decays of a Higgs boson produced in association with a \(Z\) boson in ATLAS. Phys. Rev. Lett. 112, 201802 (2014). arXiv:1402.3244 [hep-ex]
  17. 17.
    CMS Collaboration, Search for a Higgs boson decaying into a \(Z\) and a photon in \(pp\) collisions at \(\sqrt{s}\) = 7 and 8 TeV. Phys. Lett. B 726, 587 (2013). arXiv:1307.5515 [hep-ex]
  18. 18.
    CMS Collaboration, Search for the standard model Higgs boson in the dimuon decay channel in \(pp\) collisions at \(\sqrt{s}\) = 7 and 8 TeV. CMS-PAS-HIG-13-007 (2013)Google Scholar
  19. 19.
    CMS Collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated \(ZH\) production modes. Eur. Phys. J. C 74, 2980 (2014). arXiv:1404.1344 [hep-ex]
  20. 20.
    L.D. Landau, On the angular momentum of a two-photon system. Dokl. Akad. Nauk Ser. Fiz. 60, 207 (1948)Google Scholar
  21. 21.
    C.-N. Yang, Selection rules for the dematerialization of a particle into two photons. Phys. Rev. 77, 242 (1950)MATHADSCrossRefGoogle Scholar
  22. 22.
    ATLAS Collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Phys. Lett. B 726, 120 (2013). arXiv:1307.1432 [hep-ex]
  23. 23.
    M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC. Eur. Phys. J. C 72, 1 (2012). arXiv:1209.2716 [hep-ph], updated results taken from http://cern.ch/gfitter (Sep 13)
  24. 24.
    J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker, A. Riotto, The probable fate of the standard model. Phys. Lett. B 679, 369 (2009). arXiv:0906.0954 [hep-ph]ADSCrossRefGoogle Scholar
  25. 25.
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson. JHEP 1312, 089 (2013). arXiv:1307.3536 ADSCrossRefGoogle Scholar
  26. 26.
    G. Isidori, V.S. Rychkov, A. Strumia, N. Tetradis, Gravitational corrections to standard model vacuum decay. Phys. Rev. D 77, 025034 (2008). arXiv:0712.0242 [hep-ph]ADSCrossRefGoogle Scholar
  27. 27.
    A. De Simone, M.P. Hertzberg, F. Wilczek, Running inflation in the standard model. Phys. Lett. B 678, 1 (2009). arXiv:0812.4946 [hep-ph]ADSCrossRefGoogle Scholar
  28. 28.
    S.P. Martin, A Supersymmetry Primer (1997). arXiv:hep-ph/9709356
  29. 29.
    M.E. Peskin, Beyond the Standard Model (1997). arXiv:hep-ph/9705479
  30. 30.
    A. Pomarol, Beyond the Standard Model (2012). arXiv:1202.1391 [hep-ph]
  31. 31.
    ATLAS Collaboration, Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2013-014 (2013)Google Scholar
  32. 32.
    LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, CERN-2013-004 (2013). arXiv:1307.1347 [hep-ph]
  33. 33.
    F. Caola, K. Melnikov, Constraining the Higgs boson width with \(ZZ\) production at the LHC. Phys. Rev. D 88, 054024 (2013). arXiv:1307.4935 [hep-ph]
  34. 34.
    J.M. Campbell, R.K. Ellis, C. Williams, Bounding the Higgs width at the LHC using full analytic results for \(gg \rightarrow e^- e^+ \mu ^- \mu ^+\). JHEP 1404, 060 (2014). arXiv:1311.3589 [hep-ph]ADSCrossRefGoogle Scholar
  35. 35.
    J.M. Campbell, R.K. Ellis, C. Williams, Bounding the Higgs width at the LHC: complementary results from \(H \rightarrow WW\). Phys. Rev. D 89, 053011 (2014). arXiv:1312.1628 [hep-ph]ADSCrossRefGoogle Scholar
  36. 36.
    L.J. Dixon, Y. Li, Bounding the Higgs boson width through interferometry. Phys. Rev. Lett. 111, 111802 (2013). arXiv:1305.3854 [hep-ph]ADSCrossRefGoogle Scholar
  37. 37.
    S.P. Martin, Interference of Higgs diphoton signal and background in production with a jet at the LHC. Phys. Rev. D 88, 013004 (2013). arXiv:1303.3342 [hep-ph]ADSCrossRefGoogle Scholar
  38. 38.
    M.J. Dolan, C. Englert, M. Spannowsky, Higgs self-coupling measurements at the LHC. JHEP 1210, 112 (2012). arXiv:1206.5001 [hep-ph]ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Denys Wilkinson BuildingUniversity of OxfordOxfordUK

Personalised recommendations