Introduction and Theoretical Motivation

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The Standard Model (SM) of particle physics describes the behaviour of sub-atomic particles. Since its formulation in the 1970s, it has experienced unparalleled success in modelling a wide range of phenomena that have been experimentally verified to an extraordinary degree of precision; no experimental result within the remit of the Standard Model is currently considered to significantly contradict its validity.

References

  1. 1.
    I.J.R. Aitchison, A.J.G. Hey, Gauge Theories in Particle Physics, 3rd edn. (Taylor & Francis, Abingdon, 2003)CrossRefGoogle Scholar
  2. 2.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press, 1995)Google Scholar
  3. 3.
    S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22, 579 (1961)CrossRefGoogle Scholar
  4. 4.
    S. Weinberg, A model of Leptons. Phys. Rev. Lett. 19, 1264 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    A. Salam, Weak and electromagnetic interactions, in Elementary Particle Physics:Relativistic Groups and Analyticity, ed. by N. Svartholm. Proceedings of the Eighth Nobel Symposium (Almqvist & Wiksell, 1968), p. 367Google Scholar
  6. 6.
    G.’t Hooft, M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44, 189 (1972)Google Scholar
  7. 7.
    E. Noether, Invariante Variationsprobleme. Nachr. v. d. Ges. d. Wiss. zu Göttingen, Math-phys. Klasse, 1918, 235 (1918)Google Scholar
  8. 8.
    Particle Data Group, Review of particle physics, Phys. Rev. D 86, 010001 (2012), and 2013 partial update for the 2014 ednGoogle Scholar
  9. 9.
    C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413 (1957)ADSCrossRefGoogle Scholar
  10. 10.
    G. Collaboration, Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment. Phys. Lett. B 46, 138 (1973)CrossRefGoogle Scholar
  11. 11.
    L. Alvarez-Gaume, J. Ellis, Eyes on a prize particle. Nat. Phys. 7, 2 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Goldstone, A. Salam, S. Weinberg, Broken Symmetries. Phys. Rev. 127, 965 (1962)MATHMathSciNetADSCrossRefGoogle Scholar
  13. 13.
    F. Englert, R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett. 13, 321 (1964)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964)ADSCrossRefGoogle Scholar
  15. 15.
    P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964)ADSCrossRefGoogle Scholar
  17. 17.
    P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156 (1966)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    T.W.B. Kibble, Symmetry breaking in non-abelian gauge theories. Phys. Rev. 155, 1554 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    UA1 Collaboration, Experimental observation of isolated large transverse energy electrons with associated missing energy at \(\mathit{\sqrt{s}=540}\) GeV. Phys. Lett. B 122, 103 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    UA2 Collaboration, Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN \(\bar{p}p\) collider. Phys. Lett. B 122, 476 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    UA1 Collaboration, Experimental observation of Lepton pairs of invariant mass around 95 \(GeV/c^2\) at the CERN SPS collider. Phys. Lett. B 126, 398 (1983)Google Scholar
  22. 22.
    UA2 Collaboration, Evidence for \(Z^0\rightarrow e^+e^-\) at the CERN \(\bar{p}p\) collider. Phys. Lett. B 129, 130 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    UA1 Collaboration, Studies of intermediate vector boson production and decay in UA1 at the CERN proton-antiproton collider. Z. Phys. C 44, 15 (1989)CrossRefGoogle Scholar
  24. 24.
    P.B. Littlewood, C.M. Varma, Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity. Phys. Rev. Lett. 47, 811 (1981)ADSCrossRefGoogle Scholar
  25. 25.
    LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 2. Differential Distributions, CERN-2012-002 (2012), arXiv:1201.3084 [hep-ph]
  26. 26.
    LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, CERN-2013-004 (2013), arXiv:1307.1347 [hep-ph]
  27. 27.
    Particle Data Group, Review of particle physics. Phys. Lett. B 204, 1 (1988)CrossRefGoogle Scholar
  28. 28.
    ALEPH, DELPHI, L3, OPAL Collaborations, LEP Working Group for Higgs boson searches, Search for the Standard Model Higgs boson at LEP. Phys. Lett. B 565, 61 (2003)Google Scholar
  29. 29.
    CDF, D0 Collaborations, Tevatron New Phenomena and Higgs Working Group, Combined CDF and D0 Upper Limits on Standard Model Higgs-Boson Production with up to 6.7 fb\(^{-1}\) of Data, FERMILAB-CONF-10-257-E (2010), arXiv:1007.4587 [hep-ex]
  30. 30.
    H. Flacher et al., Revisiting the Global Electroweak Fit of the Standard Model and Beyond with Gfitter, Eur. Phys. J. C 60, 543 (2009), arXiv:0811.0009 [hep-ph], updated results taken from http://cern.ch/gfitter (Aug 10)
  31. 31.
    J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker, A. Riotto, The probable fate of the standard model. Phys. Lett. B 679, 369 (2009), arXiv:0906.0954 [hep-ph]
  32. 32.
    ATLAS, CDF, CMS and D0 Collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, ATLAS-CONF-2014-008 (2014), arXiv:1403.4427 [hep-ex]

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Denys Wilkinson BuildingUniversity of OxfordOxfordUK

Personalised recommendations