Skip to main content

MicroRNA Involvement in Intestinal Tumorigenesis

  • Chapter
  • First Online:
Book cover Intestinal Tumorigenesis

Abstract

Intestinal tumorigenesis is characterized by accumulation of genetic and epigenetic alterations that lead to enhanced malignant potential of epithelial cells. Recent evidence suggests that 18–22 nt small non-coding RNAs, microRNAs (miRNAs) play a crucial role in epigenetic regulation during carcinogenesis. Regulating hundreds of targets simultaneously, miRNAs can affect multiple signaling pathways and serve as a “hub” in gene regulatory network. A large part of oncogenes and tumor suppressors are controlled by miRNAs, and conversely, these genes regulate miRNA expression by transcriptional control and by interfering with the miRNA biogenesis process. In addition, somatic mutations and single nucleotide polymorphisms in miRNA genes and in target messenger RNAs attenuate miRNA-mediated gene suppression efficiency. These complicated gene–miRNA interactions create aberrant gene expression profiles, which lead to disruption of cellular homeostasis and eventually to carcinogenesis. In this chapter, we summarize a variety of dysregulation mechanisms of miRNAs and present an overview of miRNA involvement in intestinal tumorigenesis, mainly in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71. doi:10.1038/nature07242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG et al (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22(22):3172–3183. doi:10.1101/gad.1706508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Godnic I, Zorc M, Jevsinek Skok D, Calin GA, Horvat S, Dovc P et al (2013) Genome-wide and species-wide in silico screening for intragenic microRNAs in human, mouse and chicken. PLoS ONE 8(6):e65165. doi:10.1371/journal.pone.0065165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lutter D, Marr C, Krumsiek J, Lang EW, Theis FJ (2010) Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects. BMC Genomics 11:224. doi:10.1186/1471-2164-11-224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13(3):272–286. doi:10.1016/j.ccr.2008.02.013

    Article  CAS  PubMed  Google Scholar 

  7. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genetics 11(9):597–610. doi:10.1038/nrg2843

    CAS  PubMed  Google Scholar 

  8. Suzuki HI, Miyazono K (2011) Emerging complexity of microRNA generation cascades. J Biochem 149(1):15–25. doi:10.1093/jb/mvq113

    Article  CAS  PubMed  Google Scholar 

  9. Spizzo R, Nicoloso MS, Croce CM, Calin GA (2009) SnapShot: microRNAs in cancer. Cell 137(3):586–586, e1. doi:10.1016/j.cell.2009.04.040

    Article  CAS  PubMed  Google Scholar 

  10. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101(9):2999–3004. doi:10.1073/pnas.0307323101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Mathelier A, Carbone A (2013) Large scale chromosomal mapping of human microRNA structural clusters. Nucl Acids Res 41(8):4392–4408. doi:10.1093/nar/gkt112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166. doi:10.1186/1471-2164-8-166

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  14. Petrocca F, Vecchione A, Croce CM (2008) Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res 68(20):8191–8194. doi:10.1158/0008-5472.CAN-08-1768

    Article  CAS  PubMed  Google Scholar 

  15. Kent OA, Fox-Talbot K, Halushka MK (2013) RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets Oncogene 32(20):2576–2585. doi:10.1038/onc.2012.266

    Article  CAS  PubMed  Google Scholar 

  16. Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12(9):613–626. doi:10.1038/nrc3318

    Article  CAS  PubMed  Google Scholar 

  17. Chang T-C, Zeitels LR, Hwang H-W, Chivukula RR, Wentzel EA, Dews M et al (2009) Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci U S A 106(9):3384–3389. doi:10.1073/pnas.0808300106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647. doi:10.1016/j.cell.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  19. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New Eng J Med 353(17):1793–1801. doi:10.1056/NEJMoa050995

    Article  CAS  PubMed  Google Scholar 

  20. Ofir M, Hacohen D, Ginsberg D (2011) MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res 9(4):440–447. doi:10.1158/1541-7786.MCR-10-0344

    Article  CAS  PubMed  Google Scholar 

  21. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67(4):1424–1429. doi:10.1158/0008-5472.CAN-06-4218

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Zhou Y, Feng X, An P, Quan X, Wang H et al (2014) MicroRNA-126 functions as a tumor suppressor in colorectal cancer cells by targeting CXCR4 via the AKT and ERK1/2 signaling pathways. Int J Oncol 44(1):203–210. doi:10.3892/ijo.2013.2168

    CAS  PubMed  Google Scholar 

  23. Zhang Y, Wang X, Xu B, Wang B, Wang Z, Liang Y et al (2013) Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol Rep 30(4):1976–1984. doi:10.3892/or.2013.2633

    CAS  PubMed  Google Scholar 

  24. Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR, Goel A (2010) Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 70(16):6609–6618. doi:10.1158/0008-5472.CAN-10-0622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Liu M, Lang N, Qiu M, Xu F, Li Q, Tang Q et al (2011) miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int J Cancer 128(6):1269–1279. doi:10.1002/ijc.25452

    Article  CAS  PubMed  Google Scholar 

  26. Pagliuca A, Valvo C, Fabrizi E, di Martino S, Biffoni M, Runci D et al (2013) Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene 32(40):4806–4813. doi:10.1038/onc.2012.495

    Article  CAS  PubMed  Google Scholar 

  27. Goel A, Boland CR (2012) Epigenetics of colorectal cancer. Gastroenterology 143(6):1442–1460, e1. doi:10.1053/j.gastro.2012.09.032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pichiorri F, Suh S-S, Rocci A, De Luca L, Taccioli C, Santhanam R et al (2010) Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18(4):367–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601. doi:10.1038/ncb1722

    Article  CAS  PubMed  Google Scholar 

  30. Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim Y-H, Tsuchiya KD et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27(27):3880–3888. doi:10.1038/onc.2008.10

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Wu J, Meng X, Ying X, Zuo Y, Liu R et al (2011) MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 32(7):1033–1042. doi:10.1093/carcin/bgr081

    Article  CAS  PubMed  Google Scholar 

  32. Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY et al (2013) MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene 32(15):1910–1920. doi:10.1038/onc.2012.214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688. doi:10.1038/nature06174

    Article  CAS  PubMed  Google Scholar 

  34. Nishida N, Yamashita S, Mimori K, Sudo T, Tanaka F, Shibata K et al (2012) MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann Surg Oncol. doi:10.1245/s10434-012-2246-1

    Google Scholar 

  35. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11(4):252–263. doi:10.1038/nrm2868

    Article  CAS  PubMed  Google Scholar 

  36. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299(4):425–436. doi:10.1001/jama.299.4.425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104(40):15805–15810. doi:10.1073/pnas.0707628104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y et al (2010) MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 285(28):21496–21507. doi:10.1074/jbc.M109.083337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink, JAF, Bolijn A et al (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68(14):5795–5802. doi:10.1158/0008-5472.CAN-08-0951

    Article  CAS  PubMed  Google Scholar 

  40. Li Z, Huang H, Li Y, Jiang X, Chen P, Arnovitz S et al (2012) Up-regulation of a HOXA-PBX3 homeobox-gene signature following down-regulation of miR-181 is associated with adverse prognosis in patients with cytogenetically abnormal AML. Blood 119(10):2314–2324. doi:10.1182/blood-2011-10-386235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M et al (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8(3):278–284. doi:10.1038/ncb1373

    Article  CAS  PubMed  Google Scholar 

  42. Ota T, Doi K, Fujimoto T, Tanaka Y, Ogawa M, Matsuzaki H et al (2012) KRAS up-regulates the expression of miR-181a, miR-200c and miR-210 in a three-dimensional-specific manner in DLD-1 colorectal cancer cells. Anticancer Res 32(6):2271–2275.

    CAS  PubMed  Google Scholar 

  43. Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K et al (2008) miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 7(2):255–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK et al (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35(6):856–867. doi:10.1016/j.molcel.2009.09.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kelly TJ, Souza AL, Clish CB, Puigserver P (2011) A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol Cell Biol 31(13):2696–2706. doi:10.1128/MCB.01242-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Medina R, Zaidi SK, Liu C-G, Stein JL, van Wijnen AJ, Croce CM, Stein GS (2008) MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 68(8):2773–2780. doi:10.1158/0008-5472.CAN-07-6754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Jia CY, Li HH, Zhu XC, Dong YW, Fu D, Zhao QL et al (2011) MiR-223 suppresses cell proliferation by targeting IGF-1R. PLoS ONE 6(11):e27008. doi:10.1371/journal.pone.0027008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Wu L, Li H, Jia CY, Cheng W, Yu M, Peng M et al (2012) MicroRNA-223 regulates FOXO1 expression and cell proliferation. FEBS Lett 586(7):1038–1043. doi:10.1016/j.febslet.2012.02.050

    Article  CAS  PubMed  Google Scholar 

  49. Suzuki H, Takatsuka S, Akashi H, Yamamoto E, Nojima M, Maruyama R et al (2011) Genome-wide profiling of chromatin signatures reveals epigenetic regulation of microRNA genes in colorectal cancer. Cancer Res 71(17):5646–5658. doi:10.1158/0008-5472.CAN-11-1076

    Article  CAS  PubMed  Google Scholar 

  50. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132. doi:10.1158/0008-5472.CAN-08-0325

    Article  CAS  PubMed  Google Scholar 

  51. Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J et al (2009) Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 125(11):2737–2743. doi:10.1002/ijc.24638

    Article  CAS  PubMed  Google Scholar 

  52. Suzuki H, Maruyama R, Yamamoto E, Kai M (2013) Epigenetic alteration and microRNA dysregulation in cancer. Front Genet 4(December):258. doi:10.3389/fgene.2013.00258

    PubMed Central  PubMed  Google Scholar 

  53. Fabbri M, Calin GA (2010) Epigenetics and miRNAs in human cancer. Adv Genet 70:87–99 (1st ed, Elsevier Inc.). doi:10.1016/B978-0-12-380866-0.60004-6

    Article  CAS  PubMed  Google Scholar 

  54. Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 10(6):389–402. doi:10.1038/nrc2867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Yang R, Schlehe B, Hemminki K, Sutter C, Bugert P, Wappenschmidt B et al (2010) A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res Treat 121(3):693–702. doi:10.1007/s10549-009-0633-5

    Article  PubMed  Google Scholar 

  56. Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M et al (2011) A let-7 microRNA-binding site polymorphism in 3†²-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Annal Oncol 22(1):104–109. doi:10.1093/annonc/mdq315

    Article  CAS  Google Scholar 

  57. Pan X-M, Sun R-F, Li Z-H, Guo X-M, Zhang Z, Qin H-J et al (2014) A let-7 KRAS rs712 polymorphism increases colorectal cancer risk. Tumour Biol 35(1):831–835. doi:10.1007/s13277-013-1114-3

    Article  CAS  PubMed  Google Scholar 

  58. Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L et al (2008) Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis 29(3):579–584. doi:10.1093/carcin/bgm304

    Article  CAS  PubMed  Google Scholar 

  59. Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D, Wang K (2010) Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA 16(11):2170–2180. doi:10.1261/rna.2225110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Chang H-T, Li S-C, Ho M-R, Pan H-W, Ger L-P, Hu L-Y et al (2012) Comprehensive analysis of microRNAs in breast cancer. BMC Genomics 13(Suppl 7):S18. doi:10.1186/1471-2164-13-S7-S18

    PubMed Central  PubMed  Google Scholar 

  61. Li S-C, Liao Y-L, Ho M-R, Tsai K-W, Lai C-H, Lin W (2012) miRNA arm selection and isomiR distribution in gastric cancer. BMC Genomics 13(Suppl 1):S13. doi:10.1186/1471-2164-13-S1-S13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39(5):673–677. doi:10.1038/ng2003

    Article  CAS  PubMed  Google Scholar 

  63. Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA et al (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41(3):365–370. doi:10.1038/ng317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R et al (2010) A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18(4):303–315. doi:10.1016/j.ccr.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  65. Iliou MS, da Silva-Diz V, Carmona FJ, Ramalho-Carvalho J, Heyn H, Villanueva A et al (2013) Impaired DICER1 function promotes stemness and metastasis in colon cancer. Oncogene (August):1–13. doi:10.1038/onc.2013.398

    Google Scholar 

  66. Faber C, Horst D, Hlubek F, Kirchner T (2011) Overexpression of Dicer predicts poor survival in colorectal cancer. Eur J Cancer 47(9):1414–1419. doi:10.1016/j.ejca.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  67. Papachristou DJ, Korpetinou A, Giannopoulou E, Antonacopoulou AG, Papadaki H, Grivas P et al (2011) Expression of the ribonucleases drosha, dicer, and ago2 in colorectal carcinomas virchows archiv. Int J Pathol 459(4):431–440. doi:10.1007/s00428-011-1119-5

    CAS  Google Scholar 

  68. Stratmann J, Wang C-J, Gnosa S, Wallin A, Hinselwood D, Sun X-F, Zhang H (2011) Dicer and miRNA in relation to clinicopathological variables in colorectal cancer patients. BMC Cancer 11(1):345. doi:10.1186/1471-2407-11-345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Shen J, Xia W, Khotskaya YB, Huo L, Nakanishi K, Lim S-O et al (2013) EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497(7449):383–387. doi:10.1038/nature12080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Paroo Z, Ye X, Chen S, Liu Q (2009) Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 139(1):112–122. doi:10.1016/j.cell.2009.06.044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460(7254):529–533. doi:10.1038/nature08199

    Article  CAS  PubMed  Google Scholar 

  72. Michlewski G, Guil S, Semple CA, Cáceres JF (2008) Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 32(3):383–393. doi:10.1016/j.molcel.2008.10.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Ramos A, Gherzi R, Rosenfeld MG (2009) The RNA-binding protein ksrp promotes the biogenesis of a subset of miRNAs. Nature 459(7249):1010–1014. doi:10.1038/nature08025.The

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97–100. doi:10.1126/science.1154040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Piskounova E, Polytarchou C, Thornton JE, Hagan JP, Lapierre J, Pothoulakis C et al (2012) Oncogenic Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147(5):730–748. doi:10.1016/j.cell.2011.10.039. Oncogenic

    Google Scholar 

  76. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi:10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  77. Calin GA, Liu C, Ferracin M, Hyslop T, Spizzo R, Sevignani C et al (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12(3):215–229. doi:10.1016/j.ccr.2007.07.027

    Article  CAS  PubMed  Google Scholar 

  78. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388. doi:10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  79. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338. doi:10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  80. Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L et al (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25(1):69–80. doi:10.1016/j.devcel.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  81. De Giorgio A, Krell J, Harding V, Stebbing J, Castellano L (2013) Emerging roles of ceRNAs in cancer: insights from the regulation of PTEN. Mol Cell Biol. doi:10.1128/MCB.00683-13

    Google Scholar 

  82. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U et al (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147(2):344–357. doi:10.1016/j.cell.2011.09.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer Nat Rev Cancer 8(5):387–398. doi:10.1038/nrc2389

    Article  CAS  PubMed  Google Scholar 

  84. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G et al (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337. doi:10.1038/nature11252

    Article  CAS  Google Scholar 

  85. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    Article  CAS  PubMed  Google Scholar 

  86. Kim NH, Cha YH, Kang SE, Lee Y, Lee I, Cha SY et al (2013) p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells. Cell Cycle 12(10):1578–1587. doi:10.4161/cc.24739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Mongroo PS, Rustgi AK (2010) The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther 10(3):219–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Yu C-C, Tsai L-L, Wang M-L, Yu C-H, Lo W-L, Chang Y-C et al (2013) miR145 targets the SOX9/ADAM17 axis to inhibit tumor-initiating cells and IL-6-mediated paracrine effects in head and neck cancer. Cancer Res 73(11):3425–3440. doi:10.1158/0008-5472.CAN-12-3840

    Article  CAS  PubMed  Google Scholar 

  89. Rani SB, Rathod SS, Karthik S, Kaur N, Muzumdar D, Shiras AS (2013) MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro Oncol 15(10):1302–1316. doi:10.1093/neuonc/not090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Dynoodt P, Speeckaert R, De Wever O, Chevolet I, Brochez L, Lambert J, Van Gele M (2013) miR-145 overexpression suppresses the migration and invasion of metastatic melanoma cells. Int J Oncol 42(4):1443–1451. doi:10.3892/ijo.2013.1823

    CAS  PubMed  Google Scholar 

  91. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Different 20(12):1603–1614. doi:10.1038/cdd.2013.125

    Article  CAS  Google Scholar 

  92. Pao W, Chmielecki J (2010) Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 10(11):760–774. doi:10.1038/nrc2947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Mlcochova J, Faltejskova P (2013) MicroRNAs targeting EGFR signalling pathway in colorectal cancer. J Cancer Res Clin Oncol 1615–1624. doi:10.1007/s00432-013-1470-9

    Google Scholar 

  94. Guo C, Sah JF, Beard L, Willson JKV, Markowitz SD, Guda K (2008) The Noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosome Cancer 946(April):939–946. doi:10.1002/gcc

    Article  CAS  Google Scholar 

  95. Mestdagh P, Boström A-K, Impens F, Fredlund E, Van Peer G, De Antonellis P et al (2010) The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol Cell 40(5):762–773. doi:10.1016/j.molcel.2010.11.038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Li Q, Zhang D, Wang Y, Sun P, Hou X, Larner J et al (2013) MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation. Sci Rep 3:2038. doi:10.1038/srep02038

    PubMed Central  PubMed  Google Scholar 

  97. Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J et al (2013) MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut 62(9):1315–1326. doi:10.1136/gutjnl-2011-301846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, Carneiro F, Esteller M (2012) Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31(16):2062–2074. doi:10.1038/onc.2011.383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68(19):7846–7854. doi:10.1158/0008-5472.CAN-08-1942

    Article  CAS  PubMed  Google Scholar 

  100. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134. doi:10.1038/nature05939

    Article  CAS  PubMed  Google Scholar 

  101. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105(36):13421–13426. doi:10.1073/pnas.0801613105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T et al. (2008) p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68(24):10094–10104. doi:10.1158/0008-5472.CAN-08-1569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Nishida N, Yokobori T, Mimori K, Sudo T, Tanaka F, Shibata K et al (2011) MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int J Oncol 38(5):1437–1443. doi:10.3892/ijo.2011.969

    CAS  PubMed  Google Scholar 

  104. Chang C-J, Chao C-H, Xia W, Yang J-Y, Xiong Y, Li C-W et al (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13(3):317–323. doi:10.1038/ncb2173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U, Hermeking H (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10(24):4256–4271. doi:10.4161/cc.10.24.18552

    Article  CAS  PubMed  Google Scholar 

  106. Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9(10):775–789. doi:10.1038/nrd3179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Schwarzenbach H, Nishida N, Calin GA, Pantel K (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. doi:10.1038/nrclinonc.2014.5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Calin MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nishida, N., Calin, G. (2015). MicroRNA Involvement in Intestinal Tumorigenesis. In: Yang, V., Bialkowska, A. (eds) Intestinal Tumorigenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-19986-3_6

Download citation

Publish with us

Policies and ethics