Skip to main content

The Role of PI3K Signaling Pathway in Intestinal Tumorigenesis

  • Chapter
  • First Online:
  • 538 Accesses

Abstract

The phosphoinositide 3-kinases (PI3K) are a family of signaling enzymes that regulate multiple key cellular functions including cell cycle progression, growth, migration, apoptosis, and vesicular trafficking. Components of this pathway are necessary for normal growth and development, but due to both genetic and metabolic changes, this pathway can become dysregulated as early as the fetal period. Continued alterations of the PI3K pathway can frequently lead to activation of cancer development and metastasis. As more information is discovered about the components of this pathway and their signaling mechanisms we have opportunities to exploit multiple sites of the cascade, and develop targeted inhibitors against these small molecules. A thorough understanding of this pathway and its signaling mechanisms is paramount to the development of new and improved treatments for intestinal cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

4E-BP:

Eukaryotic translation initiation factor 4E-binding protein

5-FU:

5-fluorouracil

BMP:

Bone morphogenetic protein

CCK2R:

Gastrin/cholecystokinin-2 receptor

c-FLIP:

A master anti-apoptotic regulator

DNA-PK:

DNA-dependent protein kinase

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptors

EMT:

Epithelial-mesenchymal transition

FasL:

A type-II transmembrane protein of tumor necrosis factor

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

FOXO:

Forkhead box subgroup O

GI:

Gastrointestinal

GISTs:

Gastrointestinal stromal tumors

GPCR:

G-protein couple receptors

GSK3β:

Glycogen synthase kinase-3 beta

GTP:

Guanosine triphosphate

HER2:

Human epidermal growth factor receptor 2

IGF-1:

Insulin like growth factor 1

LY294002:

2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one

mTOR:

Mammalian target of rapamycin

mTORC:

mTOR complex (mTORC1 and mTORC2)

PDK1:

3-phosphoinositide dependent protein kinase-1

PH:

Pleckstrin homology

PHLPP:

PH domain and leucine rich repeat protein phosphatases

PI3K:

Phosphatidylinositide 3-kinase

PIK3CA:

Gene encoding p110α

PIK3R1:

Gene encoding p85α

PIP2 :

Phosphatidylinositol 4,5-bisphosphate

PIP3 :

Phosphatidylinositol (3, 4, 5) phosphate

PP2A:

Protein phosphatase 2A

PTEN:

Phosphatase and tensin homolog

Rheb:

Ras homolog enriched in brain

RICTOR:

Rapamycin insensitive component of mTOR

RTK:

Receptor tyrosine kinase

S6K:

S6 kinase

SCCE:

Squamous cell carcinoma of the esophagus

SH2:

Src-homology 2

TM:

Transmembrane

TSC:

Tuberous sclerosis complex

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619. doi:10.1038/nrg1879

    Google Scholar 

  2. Edgar KA, Wallin JJ, Berry M, Lee LB, Prior WW, Sampath D, Friedman LS, Belvin M (2010) Isoform-specific phosphoinositide 3-kinase inhibitors exert distinct effects in solid tumors. Cancer Res 70(3):1164–1172. doi:10.1158/0008-5472.CAN-09-2525

    Google Scholar 

  3. Bader AG, Kang S, Zhao L, Vogt PK (2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5(12):921–929. doi:10.1038/nrc1753

    Google Scholar 

  4. Soreide K, Sandvik OM, Soreide JA, Gudlaugsson E, Mangseth K, Haugland HK (2012) Tyrosine-kinase mutations in c-KIT and PDGFR-alpha genes of imatinib naive adult patients with gastrointestinal stromal tumours (GISTs) of the stomach and small intestine: relation to tumour-biological risk-profile and long-term outcome. Clin Transl Oncol 14(8):619–629. doi:10.1007/s12094-012-0851-x

    Google Scholar 

  5. Samuels Y, Velculescu VE (2004) Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 3(10):1221–1224

    Google Scholar 

  6. Garcia-Carracedo D, Turk AT, Fine SA, Akhavan N, Tweel BC, Parsons R, Chabot JA, Allendorf JD, Genkinger JM, Remotti HE, Su GH (2013) Loss of PTEN expression is associated with poor prognosis in patients with intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 19(24):6830–6841. doi:10.1158/1078-0432.CCR-13-0624

    Google Scholar 

  7. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730. doi:10.1038/nature03918

    Google Scholar 

  8. Fasolo A, Sessa C (2008) mTOR inhibitors in the treatment of cancer. Expert Opin Investig Drugs 17(11):1717–1734. doi:10.1517/13543784.17.11.1717

    Google Scholar 

  9. Stephens L, Williams R, Hawkins P (2005) Phosphoinositide 3-kinases as drug targets in cancer. Curr Opin Pharmacol 5(4):357–365. doi:10.1016/j.coph.2005.03.002

    Google Scholar 

  10. Koul D, Shen R, Bergh S, Sheng X, Shishodia S, Lafortune TA, Lu Y, de Groot JF, Mills GB, Yung WK (2006) Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma. Mol Cancer Ther 5(3):637–644. doi:10.1158/1535-7163.MCT-05-0453

    Google Scholar 

  11. Yang L, Dan HC, Sun M, Liu Q, Sun XM, Feldman RI, Hamilton AD, Polokoff M, Nicosia SV, Herlyn M, Sebti SM, Cheng JQ (2004) Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 64(13):4394–4399. doi:10.1158/0008-5472.CAN-04-0343

    Google Scholar 

  12. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269

    Google Scholar 

  13. Deora AA, Win T, Vanhaesebroeck B, Lander HM (1998) A redox-triggered ras-effector interaction. Recruitment of phosphatidylinositol 3’-kinase to Ras by redox stress. J Biol Chem 273(45):29923–29928

    Google Scholar 

  14. Vogt PK, Kang S, Elsliger MA, Gymnopoulos M (2007) Cancer-specific mutations in phosphatidylinositol 3-kinase. Trends Biochem Sci 32(7):342–349. doi:10.1016/j.tibs.2007.05.005

    Google Scholar 

  15. Booker GW, Breeze AL, Downing AK, Panayotou G, Gout I, Waterfield MD, Campbell ID (1992) Structure of an SH2 domain of the p85 alpha subunit of phosphatidylinositol-3-OH kinase. Nature 358(6388):684–687. doi:10.1038/358684a0

    Google Scholar 

  16. Musacchio A, Gibson T, Rice P, Thompson J, Saraste M (1993) The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem Sci 18(9):343–348

    Google Scholar 

  17. Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, Hay N (1997) The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11(6):701–713

    Google Scholar 

  18. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292(5522):1728–1731. doi:10.1126/science.292.5522.1728

    Google Scholar 

  19. Mayo LD, Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98(20):11598–11603. doi:10.1073/pnas.181181198

    Google Scholar 

  20. Goswami A, Ranganathan P, Rangnekar VM (2006) The phosphoinositide 3-kinase/Akt1/Par-4 axis: a cancer-selective therapeutic target. Cancer Res 66(6):2889–2892. doi:10.1158/0008-5472.CAN-05-4458

    Google Scholar 

  21. Kitamura T, Asai N, Enomoto A, Maeda K, Kato T, Ishida M, Jiang P, Watanabe T, Usukura J, Kondo T, Costantini F, Murohara T, Takahashi M (2008) Regulation of VEGF-mediated angiogenesis by the Akt/PKB substrate Girdin. Nat Cell Biol 10(3):329–337. doi:10.1038/ncb1695

    Google Scholar 

  22. Maddika S, Panigrahi S, Wiechec E, Wesselborg S, Fischer U, Schulze-Osthoff K, Los M (2009) Unscheduled Akt-triggered activation of cyclin-dependent kinase 2 as a key effector mechanism of apoptin's anticancer toxicity. Mol Cell Biol 29(5):1235–1248. doi:10.1128/MCB.00668-08

    Google Scholar 

  23. Bishop JM (1991) Molecular themes in oncogenesis. Cell 64(2):235–248

    Google Scholar 

  24. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158. doi:10.1038/nature05610

    Google Scholar 

  25. Bader AG, Kang S, Vogt PK (2006) Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci U S A 103(5):1475–1479. doi:10.1073/pnas.0510857103

    Google Scholar 

  26. Day FL, Jorissen RN, Lipton L, Mouradov D, Sakthianandeswaren A, Christie M, Li S, Tsui C, Tie J, Desai J, Xu ZZ, Molloy P, Whitehall V, Leggett BA, Jones IT, McLaughlin S, Ward RL, Hawkins NJ, Ruszkiewicz AR, Moore J, Busam D, Zhao Q, Strausberg RL, Gibbs P, Sieber OM (2013) PIK3CA and PTEN gene and exon mutation-specific clinicopathologic and molecular associations in colorectal cancer. Clin Cancer Res 19(12):3285–3296. doi:10.1158/1078-0432.CCR-12-3614

    Google Scholar 

  27. Khan MW, Keshavarzian A, Gounaris E, Melson JE, Cheon EC, Blatner NR, Chen ZE, Tsai FN, Lee G, Ryu H, Barrett TA, Bentrem DJ, Beckhove P, Khazaie K (2013) PI3K/AKT signaling is essential for communication between tissue-infiltrating mast cells, macrophages, and epithelial cells in colitis-induced cancer. Clin Cancer Res 19(9):2342–2354. doi:10.1158/1078-0432.CCR-12-2623

    Google Scholar 

  28. Cook MB, Chow WH, Devesa SS (2009) Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977-2005. Br J Cancer 101(5):855–859. doi:10.1038/sj.bjc.6605246

    Google Scholar 

  29. Vizcaino AP, Moreno V, Lambert R, Parkin DM (2002) Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973–1995. Int J Cancer 99 (6):860–868. doi:10.1002/ijc.10427

    Google Scholar 

  30. Prins MJ, Verhage RJ, Ruurda JP, ten Kate FJ, van Hillegersberg R (2013) Over-expression of phosphorylated mammalian target of rapamycin is associated with poor survival in oesophageal adenocarcinoma: a tissue microarray study. J Clin Pathol 66(3):224–228. doi:10.1136/jclinpath-2012-201173

    Google Scholar 

  31. Wu X, Chen Y, Li G, Xia L, Gu R, Wen X, Ming X, Chen H (2014) Her3 is associated with poor survival of gastric adenocarcinoma: Her3 promotes proliferation, survival and migration of human gastric cancer mediated by PI3K/AKT signaling pathway. Med Oncol 31(4):903. doi:10.1007/s12032-014-0903-x

    Google Scholar 

  32. Fu X, Feng J, Zeng D, Ding Y, Yu C, Yang B (2014) PAK4 confers cisplatin resistance in gastric cancer cells via PI3K/Akt- and MEK/Erk-dependent pathways. Biosci Rep. doi:10.1042/bsr20130102

    Google Scholar 

  33. Nagini S (2012) Carcinoma of the stomach: a review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol 4(7):156–169. doi:10.4251/wjgo.v4.i7.156

    Google Scholar 

  34. Shaib YH, Davila JA, El-Serag HB (2006) The epidemiology of pancreatic cancer in the United States: changes below the surface. Aliment Pharmacol Ther 24(1):87–94. doi:10.1111/j.1365-2036.2006.02961.x

    Google Scholar 

  35. Zhang Y, Zhang J, Xu K, Xiao Z, Sun J, Xu J, Wang J, Tang Q (2013) PTEN/PI3K/mTOR/B7-H1 signaling pathway regulates cell progression and immuno-resistance in pancreatic cancer. Hepatogastroenterology 60(127):1766–1772

    Google Scholar 

  36. Garcia-Carracedo D, Chen ZM, Qiu W, Huang AS, Tang SM, Hruban RH, Su GH (2014) PIK3CA Mutations in Mucinous Cystic Neoplasms of the Pancreas. Pancreas 43(2):245–249. doi:10.1097/mpa.0000000000000034

    Google Scholar 

  37. Centers for Disease Control and Prevention. Hepatocellular carcinoma - United States, 2001–2006 (2010). MMWR Morb Mortal Wkly Rep 59(17):517–520

    Google Scholar 

  38. Hsu HH, Cheng LH, Ho TJ, Kuo WW, Lin YM, Chen MC, Lee NH, Tsai FJ, Tsai KH, Huang CY (2014) Apicidin-resistant HA22T hepatocellular carcinoma cells massively promote pro-survival capability via IGF-IR/PI3K/Akt signaling pathway activation. Tumour Biol 35(1):303–313. doi:10.1007/s13277-013-1041-3

    Google Scholar 

  39. Chow JS, Chen CC, Ahsan H, Neugut AI (1996) A population-based study of the incidence of malignant small bowel tumours: SEER, 1973-1990. Int J Epidemiol 25(4):722–728

    Google Scholar 

  40. Zhang Y, Yao X, Jiang C, Yue J, Guan J, Cheng H, Hajirashid M, Wang Y, Fan L (2013) Expression of PI3K, PTEN and Akt in small intestinal adenocarcinoma detected by quantum dots-based immunofluorescence technology. Cancer Biomark 13(4):299–305. doi:10.3233/cbm-130352

    Google Scholar 

  41. Byun DS, Ahmed N, Nasser S, Shin J, Al-Obaidi S, Goel S, Corner GA, Wilson AJ, Flanagan DJ, Williams DS, Augenlicht LH, Vincan E, Mariadason JM (2011) Intestinal epithelial-specific PTEN inactivation results in tumor formation. Am J Physiol Gastrointest Liver Physiol 301(5):G856–G864. doi:10.1152/ajpgi.00178.2011

    Google Scholar 

  42. Zhu C, Bassig BA, Zaridze D, Boyle P, Dai M, Li Q, Zheng T (2013) A birth cohort analysis of the incidence of ascending and descending colon cancer in the United States, 1973-2008. Cancer Cause Control 24(6):1147–1156. doi:10.1007/s10552-013-0193–1

    Google Scholar 

  43. Ahnen DJ, Wade SW, Jones WF, Sifri R, Mendoza Silveiras J, Greenamyer J, Guiffre S, Axilbund J, Spiegel A, You YN (2014) The increasing incidence of young-onset colorectal cancer: a call to action. Mayo Clin Proc 89(2):216–224. doi:10.1016/j.mayocp.2013.09.006

    Google Scholar 

  44. Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM (1985) Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315(6016):239–242

    Google Scholar 

  45. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602. doi:10.1146/annurev.biochem.70.1.535

    Google Scholar 

  46. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD (1997) Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci 22(7):267–272

    Google Scholar 

  47. Pirola L, Zvelebil MJ, Bulgarelli-Leva G, Van Obberghen E, Waterfield MD, Wymann MP (2001) Activation loop sequences confer substrate specificity to phosphoinositide 3-kinase alpha (PI3Kalpha ). Functions of lipid kinase-deficient PI3Kalpha in signaling. J Biol Chem 276(24):21544–21554. doi:10.1074/jbc.M011330200

    Google Scholar 

  48. Sun M, Hillmann P, Hofmann BT, Hart JR, Vogt PK (2010) Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha. Proc Natl Acad Sci U S A 107(35):15547–15552. doi:10.1073/pnas.1009652107

    Google Scholar 

  49. Zhao L, Vogt PK (2008) Class I PI3K in oncogenic cellular transformation. Oncogene 27(41):5486–5496. doi:10.1038/onc.2008.244

    Google Scholar 

  50. Samuels Y, Ericson K (2006) Oncogenic PI3K and its role in cancer. Curr Opin Oncol 18(1):77–82

    Google Scholar 

  51. Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH, Thomas RJ, Phillips WA (2001) The phosphatidylinositol 3’-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 61(20):7426–7429

    Google Scholar 

  52. Oda K, Okada J, Timmerman L, Rodriguez-Viciana P, Stokoe D, Shoji K, Taketani Y, Kuramoto H, Knight ZA, Shokat KM, McCormick F (2008) PIK3CA cooperates with other phosphatidylinositol 3’-kinase pathway mutations to effect oncogenic transformation. Cancer Res 68(19):8127–8136. doi:10.1158/0008-5472.can-08-0755

    Google Scholar 

  53. Jaiswal BS, Janakiraman V, Kljavin NM, Chaudhuri S, Stern HM, Wang W, Kan Z, Dbouk HA, Peters BA, Waring P, Dela Vega T, Kenski DM, Bowman KK, Lorenzo M, Li H, Wu J, Modrusan Z, Stinson J, Eby M, Yue P, Kaminker JS, de Sauvage FJ, Backer JM, Seshagiri S (2009) Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell 16(6):463–474. doi:10.1016/j.ccr.2009.10.016

    Google Scholar 

  54. Ogino S, Nosho K, Kirkner GJ, Shima K, Irahara N, Kure S, Chan AT, Engelman JA, Kraft P, Cantley LC, Giovannucci EL, Fuchs CS (2009) PIK3CA mutation is associated with poor prognosis among patients with curatively resected colon cancer. J Clin Oncol 27(9):1477–1484. doi:10.1200/JCO.2008.18.6544

    Google Scholar 

  55. Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Vogelstein B, Gabelli SB, Amzel LM (2007) The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 318(5857):1744–1748. doi:10.1126/science.1150799

    Google Scholar 

  56. Fu Z, Aronoff-Spencer E, Wu H, Gerfen GJ, Backer JM (2004) The iSH2 domain of PI 3-kinase is a rigid tether for p110 and not a conformational switch. Arch Biochem Biophys 432(2):244–251. doi:10.1016/j.abb.2004.09.032

    Google Scholar 

  57. Yu J, Wjasow C, Backer JM (1998) Regulation of the p85/p110alpha phosphatidylinositol 3’-kinase. Distinct roles for the n-terminal and c-terminal SH2 domains. J Biol Chem 273(46):30199–30203

    Google Scholar 

  58. Stintzing S, Lenz HJ (2013) A small cog in a big wheel: PIK3CA mutations in colorectal cancer. J Natl Cancer Inst 105(23):1775–1776. doi:10.1093/jnci/djt330

    Google Scholar 

  59. German S, Aslam HM, Saleem S, Raees A, Anum T, Alvi AA, Haseeb A (2013) Carcinogenesis of PIK3CA. Hered Cancer Clin Pract 11(1):5. doi:10.1186/1897-4287-11-5

    Google Scholar 

  60. Herrero-Gonzalez S, Di Cristofano A (2011) New routes to old places: PIK3R1 and PIK3R2 join PIK3CA and PTEN as endometrial cancer genes. Cancer Discov 1(2):106–107. doi:10.1158/2159-8290.CD-11-0116

    Google Scholar 

  61. Quayle SN, Lee JY, Cheung LW, Ding L, Wiedemeyer R, Dewan RW, Huang-Hobbs E, Zhuang L, Wilson RK, Ligon KL, Mills GB, Cantley LC, Chin L (2012) Somatic mutations of PIK3R1 promote gliomagenesis. PLoS One 7(11):e49466. doi:10.1371/journal.pone.0049466

    Google Scholar 

  62. Gymnopoulos M, Elsliger MA, Vogt PK (2007) Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci U S A 104(13):5569–5574. doi:10.1073/pnas.0701005104

    Google Scholar 

  63. Hofmann BT, Jucker M (2012) Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85alpha regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain. Cell Signal 24(10):1950–1954. doi:10.1016/j.cellsig.2012.06.009

    Google Scholar 

  64. Foukas LC, Daniele N, Ktori C, Anderson KE, Jensen J, Shepherd PR (2002) Direct effects of caffeine and theophylline on p110 delta and other phosphoinositide 3-kinases. Differential effects on lipid kinase and protein kinase activities. J Biol Chem 277(40):37124–37130. doi:10.1074/jbc.M202101200

    Google Scholar 

  65. Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B (2007) Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc Natl Acad Sci U S A 104 (19):7809–7814. doi:10.1073/pnas.0700373104

    Google Scholar 

  66. Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M, Inbar Y, Schneidman-Duhovny D, Wolfson HJ, Backer JM, Williams RL (2007) Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317(5835):239–242. doi:10.1126/science.1135394

    Google Scholar 

  67. Ogino S, Lochhead P, Giovannucci E, Meyerhardt JA, Fuchs CS, Chan AT (2013) Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: power and promise of molecular pathological epidemiology. Oncogene. doi:10.1038/onc.2013.244

    Google Scholar 

  68. Yu JC, Heidaran MA, Pierce JH, Gutkind JS, Lombardi D, Ruggiero M, Aaronson SA (1991) Tyrosine mutations within the alpha platelet-derived growth factor receptor kinase insert domain abrogate receptor-associated phosphatidylinositol-3 kinase activity without affecting mitogenic or chemotactic signal transduction. Mol Cell Biol 11(7):3780–3785

    Google Scholar 

  69. O’Hayre M, Degese MS, Gutkind JS (2014) Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol 27C:126–135. doi:10.1016/j.ceb.2014.01.005

    Google Scholar 

  70. Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19(49):5548–5557. doi:10.1038/sj.onc.1203957

    Google Scholar 

  71. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134. doi:10.1016/j.cell.2010.06.011

    Google Scholar 

  72. Josse C, Bouznad N, Geurts P, Irrthum A, Huynh-Thu VA, Servais L, Hego A, Delvenne P, Bours V, Oury C (2014) Identification of a microRNA landscape targeting the PI3K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 306(3):G229–G243. doi:10.1152/ajpgi.00484.2012

    Google Scholar 

  73. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A 105(6):2070–2075. doi:10.1073/pnas.0709662105

    Google Scholar 

  74. Zhang Z, Norris J, Schwartz C, Alexov E (2011) In silico and in vitro investigations of the mutability of disease-causing missense mutation sites in spermine synthase. PLoS One 6(5):e20373. doi:10.1371/journal.pone.0020373

    Google Scholar 

  75. Zhang Z, Wang L, Gao Y, Zhang J, Zhenirovskyy M, Alexov E (2012) Predicting folding free energy changes upon single point mutations. Bioinformatics 28(5):664–671. doi:10.1093/bioinformatics/bts005

    Google Scholar 

  76. Coulier F, Kumar R, Ernst M, Klein R, Martin-Zanca D, Barbacid M (1990) Human trk oncogenes activated by point mutation, in-frame deletion, and duplication of the tyrosine kinase domain. Mol Cell Biol 10(8):4202–4210

    Google Scholar 

  77. Okawa T, Michaylira CZ, Kalabis J, Stairs DB, Nakagawa H, Andl CD, Johnstone CN, Klein-Szanto AJ, El-Deiry WS, Cukierman E, Herlyn M, Rustgi AK (2007) The functional interplay between EGFR overexpression, hTERT activation, and p53 mutation in esophageal epithelial cells with activation of stromal fibroblasts induces tumor development, invasion, and differentiation. Genes Dev 21(21):2788–2803. doi:10.1101/gad.1544507

    Google Scholar 

  78. Koorstra JB, Karikari CA, Feldmann G, Bisht S, Rojas PL, Offerhaus GJ, Alvarez H, Maitra A (2009) The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biol Ther 8(7):618–626

    Google Scholar 

  79. Locatelli-Hoops S, Yeliseev AA, Gawrisch K, Gorshkova I (2013) Surface plasmon resonance applied to G protein-coupled receptors. Biomed Spectrosc Imaging 2(3):155–181. doi:10.3233/BSI-130045

    Google Scholar 

  80. Neer EJ (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80(2):249–257

    Google Scholar 

  81. Lefkowitz RJ, Rajagopal K, Whalen EJ (2006) New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol Cell 24(5):643–652. doi:10.1016/j.molcel.2006.11.007

    Google Scholar 

  82. Connelly SF, Isley BA, Baker CH, Gallick GE, Summy JM (2010) Loss of tyrosine phosphatase-dependent inhibition promotes activation of tyrosine kinase c-Src in detached pancreatic cells. Mol Carcinog 49(12):1007–1021. doi:10.1002/mc.20684

    Google Scholar 

  83. Yu HG, Schafer H, Mergler S, Muerkoster S, Cramer T, Hocker M, Herzig KH, Schmidt WE, Schmitz F (2005) Valine-286 residue in the third intracellular loop of the cholecystokinin 2 receptor exerts a pivotal role in cholecystokinin 2 receptor mediated intracellular signal transduction in human colon cancer cells. Cell Signal 17(12):1505–1515. doi:10.1016/j.cellsig.2005.03.009

    Google Scholar 

  84. Yu W, Ma S, Wang L, Zuo B, Li M, Qiao Z, Pan X, Liu Y, Wang J (2013) Upregulation of GPR34 expression affects the progression and prognosis of human gastric adenocarcinoma by PI3K/PDK1/AKT pathway. Histol Histopathol 28(12):1629–1638

    Google Scholar 

  85. Wu Q, Wang H, Zhao X, Shi Y, Jin M, Wan B, Xu H, Cheng Y, Ge H, Zhang Y (2013) Identification of G-protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma. Oncogene 32(49):5541–5550. doi:10.1038/onc.2013.264

    Google Scholar 

  86. Wu J, Xie N, Xie K, Zeng J, Cheng L, Lei Y, Liu Y, Song L, Dong D, Chen Y, Zeng R, Nice EC, Huang C, Wei Y (2013) GPR48, a poor prognostic factor, promotes tumor metastasis and activates beta-catenin/TCF signaling in colorectal cancer. Carcinogenesis 34(12):2861–2869. doi:10.1093/carcin/bgt229

    Google Scholar 

  87. Hofler A, Nichols T, Grant S, Lingardo L, Esposito EA, Gridley S, Murphy ST, Kath JC, Cronin CN, Kraus M, Alton G, Xie Z, Sutton S, Gehring M, Ermolieff J (2011) Study of the PDK1/AKT signaling pathway using selective PDK1 inhibitors, HCS, and enhanced biochemical assays. Anal Biochem 414(2):179–186. doi:10.1016/j.ab.2011.03.013

    Google Scholar 

  88. Bayascas JR (2008) Dissecting the role of the 3-phosphoinositide-dependent protein kinase-1 (PDK1) signalling pathways. Cell Cycle 7(19):2978–2982

    Google Scholar 

  89. Slattery ML, Lundgreen A, Herrick JS, Wolff RK (2011) Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer. Mutat Res 706(1–2):13–20. doi:10.1016/j.mrfmmm.2010.10.005

    Google Scholar 

  90. Meier R, Alessi DR, Cron P, Andjelkovic M, Hemmings BA (1997) Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bbeta. J Biol Chem 272(48):30491–30497

    Google Scholar 

  91. Miao B, Skidan I, Yang J, Lugovskoy A, Reibarkh M, Long K, Brazell T, Durugkar KA, Maki J, Ramana CV, Schaffhausen B, Wagner G, Torchilin V, Yuan J, Degterev A (2010) Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc Natl Acad Sci U S A 107(46):20126–20131. doi:10.1073/pnas.1004522107

    Google Scholar 

  92. Gan X, Wang J, Su B, Wu D (2011) Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 286(13):10998–11002. doi:10.1074/jbc.M110.195016

    Google Scholar 

  93. Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12(4):487–502. doi:10.1016/j.devcel.2007.03.020

    Google Scholar 

  94. Harada N, Gansauge S, Gansauge F, Gause H, Shimoyama S, Imaizumi T, Mattfeld T, Schoenberg MH, Beger HG (1997) Nuclear accumulation of p53 correlates significantly with clinical features and inversely with the expression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) in pancreatic cancer. Br J Cancer 76(3):299–305

    Google Scholar 

  95. Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, Alessi DR, Dunlop MG (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142(7):1504–1515 e1503. doi:10.1053/j.gastro.2012.02.050

    Google Scholar 

  96. Kumar A, Pandurangan AK, Lu F, Fyrst H, Zhang M, Byun HS, Bittman R, Saba JD (2012) Chemopreventive sphingadienes downregulate Wnt signaling via a PP2A/Akt/GSK3beta pathway in colon cancer. Carcinogenesis 33(9):1726–1735. doi:10.1093/carcin/bgs174

    Google Scholar 

  97. Slattery ML, Herrick JS, Lundgreen A, Fitzpatrick FA, Curtin K, Wolff RK (2010) Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1. Carcinogenesis 31(9):1604–1611. doi:10.1093/carcin/bgq142

    Google Scholar 

  98. Destefano MA, Jacinto E (2013) Regulation of insulin receptor substrate-1 by mTORC2 (mammalian target of rapamycin complex 2). Biochem Soc Trans 41(4):896–901. doi:10.1042/BST20130018

    Google Scholar 

  99. Esposito DL, Aru F, Lattanzio R, Morgano A, Abbondanza M, Malekzadeh R, Bishehsari F, Valanzano R, Russo A, Piantelli M, Moschetta A, Lotti LV, Mariani-Costantini R (2012) The insulin receptor substrate 1 (IRS1) in intestinal epithelial differentiation and in colorectal cancer. PLoS One 7(4):e36190. doi:10.1371/journal.pone.0036190

    Google Scholar 

  100. Khatri S, Yepiskoposyan H, Gallo CA, Tandon P, Plas DR (2010) FOXO3a regulates glycolysis via transcriptional control of tumor suppressor TSC1. J Biol Chem 285(21):15960–15965. doi:10.1074/jbc.M110.121871

    Google Scholar 

  101. Larsen WJ, Sherman LS, Potter SS, Scott WJ (2001) Human embryology, 3rd edn. Churchill Livingstone, New York

    Google Scholar 

  102. Martin TD, Chen XW, Kaplan RE, Saltiel AR, Walker CL, Reiner DJ, Der CJ (2014) Ral and Rheb GTPase Activating Proteins Integrate mTOR and GTPase Signaling in Aging, Autophagy, and Tumor Cell Invasion. Mol Cell 53(2):209–220. doi:10.1016/j.molcel.2013.12.004

    Google Scholar 

  103. Lacher MD, Pincheira RJ, Castro AF (2011) Consequences of interrupted Rheb-to-AMPK feedback signaling in tuberous sclerosis complex and cancer. Small GTPases 2(4):211–216. doi:10.4161/sgtp.2.4.16703

    Google Scholar 

  104. Santarpia L, Lippman SM, El-Naggar AK (2012) Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 16(1):103–119. doi:10.1517/14728222.2011.645805

    Google Scholar 

  105. Zheng J, Wu C, Lin Z, Guo Y, Shi L, Dong P, Lu Z, Gao S, Liao Y, Chen B, Yu F (2014) Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation–a novel mechanism suppressing liver fibrosis. FEBS J 281(1):88–103. doi:10.1111/febs.12574

    Google Scholar 

  106. Guha M, Plescia J, Leav I, Li J, Languino LR, Altieri DC (2009) Endogenous tumor suppression mediated by PTEN involves survivin gene silencing. Cancer Res 69(12):4954–4958. doi:10.1158/0008-5472.CAN-09-0584

    Google Scholar 

  107. Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M (2009) Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 49(4):1176–1184. doi:10.1002/hep.22737

    Google Scholar 

  108. Chowdhury S, Ongchin M, Wan G, Sharratt E, Brattain MG, Rajput A (2013) Restoration of PTEN activity decreases metastases in an orthotopic model of colon cancer. J Surg Res 184(2):755–760. doi:10.1016/j.jss.2013.03.035

    Google Scholar 

  109. Ha M, Chung JW, Hahm KB, Kim YJ, Lee W, An J, Kim DK, Kim MG (2012) A case of Cowden syndrome diagnosed from multiple gastric polyposis. World J Gastroenterol 18(8):861–864. doi:10.3748/wjg.v18.i8.861

    Google Scholar 

  110. Pilarski R, Burt R, Kohlman W, Pho L, Shannon KM, Swisher E (2013) Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst 105(21):1607–1616. doi:10.1093/jnci/djt277

    Google Scholar 

  111. Zhang LL, Liu J, Lei S, Zhang J, Zhou W, Yu HG (2014) PTEN inhibits the invasion and metastasis of gastric cancer via downregulation of FAK expression. Cell Signal 26(5):1011–1020. doi:10.1016/j.cellsig.2014.01.025

    Google Scholar 

  112. Bowen KA, Doan HQ, Zhou BP, Wang Q, Zhou Y, Rychahou PG, Evers BM (2009) PTEN loss induces epithelial–mesenchymal transition in human colon cancer cells. Anticancer Res 29(11):4439–4449

    Google Scholar 

  113. Wang JY, Chang CC, Chiang CC, Chen WM, Hung SC (2012) Silibinin suppresses the maintenance of colorectal cancer stem-like cells by inhibiting PP2A/AKT/mTOR pathways. J Cell Biochem 113(5):1733–1743. doi:10.1002/jcb.24043

    Google Scholar 

  114. Tsuchiya A, Kanno T, Shimizu T, Nakao S, Tanaka A, Tabata C, Nakano T, Nishizaki T (2014) A novel PP2A enhancer induces caspase-independent apoptosis of MKN28 gastric cancer cells with high MEK activity. Cancer Lett. doi:10.1016/j.canlet.2014.01.034

    Google Scholar 

  115. Chow JY, Barrett KE (2007) Role of protein phosphatase 2A in calcium-dependent chloride secretion by human colonic epithelial cells. Am J Physiol Cell Physiol 292(1):C452–C459. doi:10.1152/ajpcell.00034.2006

    Google Scholar 

  116. Polanowska-Grabowska R, Simon CG Jr, Falchetto R, Shabanowitz J, Hunt DF, Gear AR (1997) Platelet adhesion to collagen under flow causes dissociation of a phosphoprotein complex of heat-shock proteins and protein phosphatase 1. Blood 90(4):1516–1526

    Google Scholar 

  117. Liu J, Weiss HL, Rychahou P, Jackson LN, Evers BM, Gao T (2009) Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 28(7):994–1004. doi:10.1038/onc.2008.450

    Google Scholar 

  118. Brognard J, Sierecki E, Gao T, Newton AC (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25(6):917–931. doi:10.1016/j.molcel.2007.02.017

    Google Scholar 

  119. Call R, Grimsley M, Cadwallader L, Cialone L, Hill M, Hreish V, King ST, Riche DM (2010) Insulin–carcinogen or mitogen? Preclinical and clinical evidence from prostate, breast, pancreatic, and colorectal cancer research. Postgrad Med 122(3):158–165. doi:10.3810/pgm.2010.05.2153

    Google Scholar 

  120. Buller CL, Heilig CW, Brosius FC 3rd (2011) GLUT1 enhances mTOR activity independently of TSC2 and AMPK. Am J Physiol Renal Physiol 301(3):F588–596. doi:10.1152/ajprenal.00472.2010

    Google Scholar 

  121. Zhang HH, Huang J, Duvel K, Boback B, Wu S, Squillace RM, Wu CL, Manning BD (2009) Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS One 4(7):e6189. doi:10.1371/journal.pone.0006189

    Google Scholar 

  122. Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25(18):1895–1908. doi:10.1101/gad.17420111

    Google Scholar 

  123. Nijsten MW, van Dam GM (2009) Hypothesis: using the Warburg effect against cancer by reducing glucose and providing lactate. Med Hypotheses 73(1):48–51. doi:10.1016/j.mehy.2009.01.041

    Google Scholar 

  124. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9(8):563–575. doi:10.1038/nrc2676

    Google Scholar 

  125. Duong HQ, Hwang JS, Kim HJ, Seong YS, Bae I (2012) BML-275, an AMPK inhibitor, induces DNA damage, G2/M arrest and apoptosis in human pancreatic cancer cells. Int J Oncol 41(6):2227–2236. doi:10.3892/ijo.2012.1672

    Google Scholar 

  126. Swierczynski J, Hebanowska A, Sledzinski T (2014) Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol 20(9):2279–2303. doi:10.3748/wjg.v20.i9.2279

    Google Scholar 

  127. Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, Kwon JH, Chang EB (2011) The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS One 6(1):e16221. doi:10.1371/journal.pone.0016221

    Google Scholar 

  128. Kubo A, Corley DA, Jensen CD, Kaur R (2010) Dietary factors and the risks of oesophageal adenocarcinoma and Barrett's oesophagus. Nutr Res Rev 23(2):230–246. doi:10.1017/S0954422410000132

    Google Scholar 

  129. Portale G, Hagen JA, Peters JH, Chan LS, DeMeester SR, Gandamihardja TA, DeMeester TR (2006) Modern 5-year survival of resectable esophageal adenocarcinoma: single institution experience with 263 patients. J Am Coll Surg 202(4):588–596; discussion 596–588. doi:10.1016/j.jamcollsurg.2005.12.022

    Google Scholar 

  130. Lindkvist B, Johansen D, Stocks T, Concin H, Bjorge T, Almquist M, Haggstrom C, Engeland A, Hallmans G, Nagel G, Jonsson H, Selmer R, Ulmer H, Tretli S, Stattin P, Manjer J (2014) Metabolic risk factors for esophageal squamous cell carcinoma and adenocarcinoma: a prospective study of 580 000 subjects within the Me-Can project. BMC Cancer 14(1):103. doi:10.1186/1471-2407-14-103

    Google Scholar 

  131. Li H, Gao Q, Guo L, Lu SH (2011) The PTEN/PI3K/Akt pathway regulates stem-like cells in primary esophageal carcinoma cells. Cancer Biol Ther 11(11):950–958

    Google Scholar 

  132. Metzger R, Schneider PM, Warnecke-Eberz U, Brabender J, Holscher AH (2004) Molecular biology of esophageal cancer. Onkologie 27(2):200–206. doi:10.1159/000076913

    Google Scholar 

  133. Sunpaweravong P, Sunpaweravong S, Puttawibul P, Mitarnun W, Zeng C, Baron AE, Franklin W, Said S, Varella-Garcia M (2005) Epidermal growth factor receptor and cyclin D1 are independently amplified and overexpressed in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 131(2):111–119. doi:10.1007/s00432-004-0610-7

    Google Scholar 

  134. Bandla S, Pennathur A, Luketich JD, Beer DG, Lin L, Bass AJ, Godfrey TE, Litle VR (2012) Comparative genomics of esophageal adenocarcinoma and squamous cell carcinoma. Ann Thorac Surg 93(4):1101–1106. doi:10.1016/j.athoracsur.2012.01.064

    Google Scholar 

  135. Stoner GD, Wang LS, Chen T (2007) Chemoprevention of esophageal squamous cell carcinoma. Toxicol Appl Pharmacol 224(3):337–349. doi:10.1016/j.taap.2007.01.030

    Google Scholar 

  136. Chan JA, Blaszkowsky LS, Enzinger PC, Ryan DP, Abrams TA, Zhu AX, Temel JS, Schrag D, Bhargava P, Meyerhardt JA, Wolpin BM, Fidias P, Zheng H, Florio S, Regan E, Fuchs CS (2011) A multicenter phase II trial of single-agent cetuximab in advanced esophageal and gastric adenocarcinoma. Ann Oncol 22(6):1367–1373. doi:10.1093/annonc/mdq604

    Google Scholar 

  137. Tomblyn MB, Goldman BH, Thomas CR Jr., Benedetti JK, Lenz HJ, Mehta V, Beeker T, Gold PJ, Abbruzzese JL, Blanke CD, Committee SG (2012) Cetuximab plus cisplatin, irinotecan, and thoracic radiotherapy as definitive treatment for locally advanced, unresectable esophageal cancer: a phase-II study of the SWOG (S0414). J Thorac Oncol 7(5):906–912. doi:10.1097/JTO.0b013e31824c7bed

    Google Scholar 

  138. Wu X, Zhang J, Zhen R, Lv J, Zheng L, Su X, Zhu G, Gavine PR, Xu S, Lu S, Hou J, Liu Y, Xu C, Tan Y, Xie L, Yin X, He D, Ji Q, Hou Y, Ge D (2012) Trastuzumab anti-tumor efficacy in patient-derived esophageal squamous cell carcinoma xenograft (PDECX) mouse models. J Transl Med 10:180. doi:10.1186/1479-5876-10-180

    Google Scholar 

  139. Hirashima K, Baba Y, Watanabe M, Karashima RI, Sato N, Imamura Y, Nagai Y, Hayashi N, Iyama KI, Baba H (2012) Aberrant activation of the mTOR pathway and anti-tumour effect of everolimus on oesophageal squamous cell carcinoma. Br J Cancer 106(5):876–882. doi:10.1038/bjc.2012.36

    Google Scholar 

  140. Weng W, Wu Q, Yu Y, Mei W, Wang X (2013) A novel chemotherapeutic arene ruthenium(II) drug Rawq01 altered the effect of microRNA-21 on PTEN/AKT signaling pathway in esophageal cancer cells. Anticancer Res 33(12):5407–5414

    Google Scholar 

  141. Yang H, Sukocheva OA, Hussey DJ, Watson DI (2012) Estrogen, male dominance and esophageal adenocarcinoma: is there a link? World J Gastroenterol 18(5):393–400. doi:10.3748/wjg.v18.i5.393

    Google Scholar 

  142. Hong J, Katsha A, Lu P, Shyr Y, Belkhiri A, El-Rifai W (2012) Regulation of ERBB2 receptor by t-DARPP mediates trastuzumab resistance in human esophageal adenocarcinoma. Cancer Res 72(17):4504–4514. doi:10.1158/0008-5472.CAN-12-1119

    Google Scholar 

  143. Janmaat ML, Gallegos-Ruiz MI, Rodriguez JA, Meijer GA, Vervenne WL, Richel DJ, Van Groeningen C, Giaccone G (2006) Predictive factors for outcome in a phase II study of gefitinib in second-line treatment of advanced esophageal cancer patients. J Clin Oncol 24(10):1612–1619. doi:10.1200/jco.2005.03.4900

    Google Scholar 

  144. Shah MA, Ramanathan RK, Ilson DH, Levnor A, D’Adamo D, O’Reilly E, Tse A, Trocola R, Schwartz L, Capanu M, Schwartz GK, Kelsen DP (2006) Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinoma. J Clin Oncol 24(33):5201–5206. doi:10.1200/jco.2006.08.0887

    Google Scholar 

  145. Huang CM, Wang HM, Zheng CH, Li P, Xie JW, Wang JB, Lin JX, Lu J (2013) Tumor size as a prognostic factor in patients with node-negative gastric cancer invading the muscularis propria and subserosa (pT2-3N0M0 stage). Hepatogastroenterology 60(124):699–703. doi:10.5754/hge12733

    Google Scholar 

  146. Diaz de Liano A, Yarnoz C, Artieda C, Aguilar R, Viana S, Artajona A, Ortiz H (2009) Results of R0 surgery with D2 lymphadenectomy for the treatment of localised gastric cancer. Clin Transl Oncol 11(3):178–182

    Google Scholar 

  147. Adachi Y, Mimori K, Mori M, Maehara Y, Sugimachi K (1997) Morbidity after D2 and D3 gastrectomy for node-positive gastric carcinoma. J Am Coll Surg 184(3):240–244

    Google Scholar 

  148. Chen S, Feng X, Li Y, Yuan X, Zhou Z, Chen Y (2012) Efficacy and safety of XELOX and FOLFOX6 adjuvant chemotherapy following radical total gastrectomy. Oncol Lett 3(4):781–786. doi:10.3892/ol.2012.577

    Google Scholar 

  149. Scartozzi M, Galizia E, Verdecchia L, Berardi R, Antognoli S, Chiorrini S, Cascinu S (2007) Chemotherapy for advanced gastric cancer: across the years for a standard of care. Expert Opin Pharmacother 8(6):797–808. doi:10.1517/14656566.8.6.797

    Google Scholar 

  150. Kulke MH, Wu B, Clark JW, Enzinger PC, Lynch TJ, Vincitore M, Michelini A, Fuchs CS (2006) A phase II study of doxorubicin, cisplatin, and 5-fluorouracil in patients with advanced adenocarcinoma of the stomach or esophagus. Cancer Invest 24(3):229–234. doi:10.1080/07357900600633924

    Google Scholar 

  151. Dicken BJ, Bigam DL, Cass C, Mackey JR, Joy AA, Hamilton SM (2005) Gastric adenocarcinoma: review and considerations for future directions. Ann Surg 241(1):27–39

    Google Scholar 

  152. Borch K, Jonsson B, Tarpila E, Franzen T, Berglund J, Kullman E, Franzen L (2000) Changing pattern of histological type, location, stage and outcome of surgical treatment of gastric carcinoma. Br J Surg 87(5):618–626. doi:10.1046/j.1365-2168.2000.01425.x

    Google Scholar 

  153. Wong H, Yau T (2013) Molecular targeted therapies in advanced gastric cancer: does tumor histology matter? Therap Adv Gastroenterol 6(1):15–31. doi:10.1177/1756283X12453636

    Google Scholar 

  154. Kang JM, Shin DW, Kwon YM, Park SM, Park MS, Park JH, Son KY, Cho BL (2011) Stomach cancer screening and preventive behaviors in relatives of gastric cancer patients. World J Gastroenterol 17(30):3518–3525. doi:10.3748/wjg.v17.i30.3518

    Google Scholar 

  155. Chun N, Ford JM (2012) Genetic testing by cancer site: stomach. Cancer J 18(4):355–363. doi:10.1097/PPO.0b013e31826246dc

    Google Scholar 

  156. Dussaulx-Garin L, Blayau M, Pagenault M, Le Berre-Heresbach N, Raoul JL, Campion JP, David V, Bretagne JF (2001) A new mutation of E-cadherin gene in familial gastric linitis plastica cancer with extra-digestive dissemination. Eur J Gastroenterol Hepatol 13(6):711–715

    Google Scholar 

  157. Huntsman DG, Carneiro F, Lewis FR, MacLeod PM, Hayashi A, Monaghan KG, Maung R, Seruca R, Jackson CE, Caldas C (2001) Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. N Engl J Med 344(25):1904–1909. doi:10.1056/NEJM200106213442504

    Google Scholar 

  158. Hebbard PC, Macmillan A, Huntsman D, Kaurah P, Carneiro F, Wen X, Kwan A, Boone D, Bursey F, Green J, Fernandez B, Fontaine D, Wirtzfeld DA (2009) Prophylactic total gastrectomy (PTG) for hereditary diffuse gastric cancer (HDGC): the Newfoundland experience with 23 patients. Ann Surg Oncol 16(7):1890–1895. doi:10.1245/s10434-009-0471-z

    Google Scholar 

  159. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, Aprile G, Kulikov E, Hill J, Lehle M, Ruschoff J, Kang YK, To GATI (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697. doi:10.1016/S0140-6736(10)61121-X

    Google Scholar 

  160. Van Cutsem E, de Haas S, Kang YK, Ohtsu A, Tebbutt NC, Ming Xu J, Peng Yong W, Langer B, Delmar P, Scherer SJ, Shah MA (2012) Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial. J Clin Oncol 30(17):2119–2127. doi:10.1200/JCO.2011.39.9824

    Google Scholar 

  161. Rojo F, Tabernero J, Albanell J, Van Cutsem E, Ohtsu A, Doi T, Koizumi W, Shirao K, Takiuchi H, Ramon y Cajal S, Baselga J (2006) Pharmacodynamic studies of gefitinib in tumor biopsy specimens from patients with advanced gastric carcinoma. J Clin Oncol 24(26):4309–4316. doi:10.1200/jco.2005.04.2424

    Google Scholar 

  162. Liu J, Fu XQ, Zhou W, Yu HG, Yu JP, Luo HS (2011) LY294002 potentiates the anti-cancer effect of oxaliplatin for gastric cancer via death receptor pathway. World J Gastroenterol 17(2):181–190. doi:10.3748/wjg.v17.i2.181

    Google Scholar 

  163. Shin JY, Kim JO, Lee SK, Chae HS, Kang JH (2010) LY294002 may overcome 5-FU resistance via down-regulation of activated p-AKT in Epstein-Barr virus-positive gastric cancer cells. BMC Cancer 10:425. doi:10.1186/1471-2407-10-425

    Google Scholar 

  164. Gao YH, Zhang HP, Yang SM, Yang Y, Ma YY, Zhang XY, Yang YM (2014) Inactivation of Akt by arsenic trioxide induces cell death via mitochondrial-mediated apoptotic signaling in SGC-7901 human gastric cancer cells. Oncol Rep. doi:10.3892/or.2014.2994

    Google Scholar 

  165. Sha M, Ye J, Zhang LX, Luan ZY, Chen YB, Huang JX (2014) Celastrol induces apoptosis of gastric cancer cells by miR-21 inhibiting PI3K/Akt-NF-kappaB signaling pathway. Pharmacology 93(1–2):39–46. doi:10.1159/000357683

    Google Scholar 

  166. Surveillance Epidemiology and End Results Program (2014) Cancer Stat Fact Sheets. GPO, Washington, D.C. http://seer.cancer.gov/statfacts/. Accessed 7 March 2014

  167. Wittig R, Coy JF (2008) The role of glucose metabolism and glucose-associated signalling in cancer. Perspect Med Chem 1:64–82

    Google Scholar 

  168. Wang SF, Chou YC, Mazumder N, Kao FJ, Nagy LD, Guengerich FP, Huang C, Lee HC, Lai PS, Ueng YF (2013) 7-Ketocholesterol induces P-glycoprotein through PI3K/mTOR signaling in hepatoma cells. Biochem Pharmacol 86(4):548–560. doi:10.1016/j.bcp.2013.06.006

    Google Scholar 

  169. Meguro M, Mizuguchi T, Kawamoto M, Hirata K (2011) The molecular pathogenesis and clinical implications of hepatocellular carcinoma. Int J Hepatol 2011:818672. doi:10.4061/2011/818672

    Google Scholar 

  170. Dai XF, Ding J, Zhang RG, Ren JH, Ma CM, Wu G (2013) Radiosensitivity enhancement of human hepatocellular carcinoma cell line SMMC-7721 by sorafenib through the MEK/ERK signal pathway. Int J Radiat Biol 89(9):724–731. doi:10.3109/09553002.2013.791405

    Google Scholar 

  171. Chang Z, Shi G, Jin J, Guo H, Guo X, Luo F, Song Y, Jia X (2013) Dual PI3K/mTOR inhibitor NVP-BEZ235-induced apoptosis of hepatocellular carcinoma cell lines is enhanced by inhibitors of autophagy. Int J Mol Med 31(6):1449–1456. doi:10.3892/ijmm.2013.1351

    Google Scholar 

  172. Yun SM, Lee JH, Jung KH, Lee H, Lee S, Hong S, Hong SS (2013) Induction of apoptosis and suppression of angiogenesis of hepatocellular carcinoma by HS-159, a novel phosphatidylinositol 3-kinase inhibitor. Int J Oncol 43(1):201–209. doi:10.3892/ijo.2013.1912

    Google Scholar 

  173. Kirstein MM, Boukouris AE, Pothiraju D, Buitrago-Molina LE, Marhenke S, Schutt J, Orlik J, Kuhnel F, Hegermann J, Manns MP, Vogel A (2013) Activity of the mTOR inhibitor RAD001, the dual mTOR and PI3-kinase inhibitor BEZ235 and the PI3-kinase inhibitor BKM120 in hepatocellular carcinoma. Liver Int 33(5):780–793. doi:10.1111/liv.12126

    Google Scholar 

  174. Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM, Yeo CJ, Jackson CE, Lynch HT, Hruban RH, Kern SE (1996) Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 56(23):5360–5364

    Google Scholar 

  175. Weiss GA, Rossi MR, Khushalani NI, Lo K, Gibbs JF, Bharthuar A, Cowell JK, Iyer R (2013) Evaluation of phosphatidylinositol-3-kinase catalytic subunit (PIK3CA) and epidermal growth factor receptor (EGFR) gene mutations in pancreaticobiliary adenocarcinoma. J Gastrointest Oncol 4(1):20–29. doi:10.3978/j.issn.2078–6891.2012.012

    Google Scholar 

  176. Permuth-Wey J, Egan KM (2009) Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta-analysis. Fam Cancer 8(2):109–117. doi:10.1007/s10689-008-9214–8

    Google Scholar 

  177. Liles JS, Arnoletti JP, Tzeng CW, Howard JH, Kossenkov AV, Kulesza P, Heslin MJ, Frolov A (2010) ErbB3 expression promotes tumorigenesis in pancreatic adenocarcinoma. Cancer Biol Ther 10(6):555–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  178. Kelley RK, Ko AH (2008) Erlotinib in the treatment of advanced pancreatic cancer. Biologics 2(1):83–95

    Google Scholar 

  179. Tan X, Egami H, Abe M, Nozawa F, Hirota M, Ogawa M (2005) Involvement of MMP-7 in invasion of pancreatic cancer cells through activation of the EGFR mediated MEK-ERK signal transduction pathway. J Clin Pathol 58(12):1242–1248. doi:10.1136/jcp.2004.025338

    Google Scholar 

  180. Venkannagari S, Fiskus W, Peth K, Atadja P, Hidalgo M, Maitra A, Bhalla KN (2012) Superior efficacy of co-treatment with dual PI3K/mTOR inhibitor NVP-BEZ235 and pan-histone deacetylase inhibitor against human pancreatic cancer. Oncotarget 3(11):1416–1427

    Google Scholar 

  181. Glienke W, Maute L, Wicht J, Bergmann L (2012) The dual PI3K/mTOR inhibitor NVP-BGT226 induces cell cycle arrest and regulates Survivin gene expression in human pancreatic cancer cell lines. Tumour Biol 33(3):757–765. doi:10.1007/s13277-011-0290-2

    Google Scholar 

  182. Li J, Liang X, Yang X (2012) Ursolic acid inhibits growth and induces apoptosis in gemcitabine-resistant human pancreatic cancer via the JNK and PI3K/Akt/NF-kappaB pathways. Oncol Rep 28(2):501–510. doi:10.3892/or.2012.1827

    Google Scholar 

  183. Yothaisong S, Dokduang H, Techasen A, Namwat N, Yongvanit P, Bhudhisawasdi V, Puapairoj A, Riggins GJ, Loilome W (2013) Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy. Tumour Biol 34(6):3637–3648. doi:10.1007/s13277-013-0945-2

    Google Scholar 

  184. Leelawat K, Narong S, Udomchaiprasertkul W, Leelawat S, Tungpradubkul S (2009) Inhibition of PI3K increases oxaliplatin sensitivity in cholangiocarcinoma cells. Cancer Cell Int 9:3. doi:10.1186/1475-2867-9-3

    Google Scholar 

  185. de Gramont A, Hubbard J, Shi Q, O’Connell MJ, Buyse M, Benedetti J, Bot B, O’Callaghan C, Yothers G, Goldberg RM, Blanke CD, Benson A, Deng Q, Alberts SR, Andre T, Wolmark N, Grothey A, Sargent D (2010) Association between disease-free survival and overall survival when survival is prolonged after recurrence in patients receiving cytotoxic adjuvant therapy for colon cancer: simulations based on the 20,800 patient ACCENT data set. J Clin Oncol 28(3):460–465. doi:10.1200/jco.2009.23.1407

    Google Scholar 

  186. Andre T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, Bonetti A, Clingan P, Bridgewater J, Rivera F, de Gramont A (2009) Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 27(19):3109–3116. doi:10.1200/jco.2008.20.6771

    Google Scholar 

  187. Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, Topham C, Zaninelli M, Clingan P, Bridgewater J, Tabah-Fisch I, de Gramont A (2004) Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350(23):2343–2351. doi:10.1056/NEJMoa032709

    Google Scholar 

  188. Kuebler JP, Wieand HS, O’Connell MJ, Smith RE, Colangelo LH, Yothers G, Petrelli NJ, Findlay MP, Seay TE, Atkins JN, Zapas JL, Goodwin JW, Fehrenbacher L, Ramanathan RK, Conley BA, Flynn PJ, Soori G, Colman LK, Levine EA, Lanier KS, Wolmark N (2007) Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: results from NSABP C-07. J Clin Oncol 25(16):2198–2204. doi:10.1200/jco.2006.08.2974

    Google Scholar 

  189. Grothey A, Sargent D, Goldberg RM, Schmoll HJ (2004) Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 22(7):1209–1214. doi:10.1200/jco.2004.11.037

    Google Scholar 

  190. Arrington AK, Heinrich EL, Lee W, Duldulao M, Patel S, Sanchez J, Garcia-Aguilar J, Kim J (2012) Prognostic and Predictive Roles of KRAS Mutation in Colorectal Cancer. Int J Mol Sci 13(10):12153–12168. doi:10.3390/ijms131012153

    Google Scholar 

  191. Kennedy RD, Potter DD, Moir CR, El-Youssef M (2014) The natural history of familial adenomatous polyposis syndrome: A 24year review of a single center experience in screening, diagnosis, and outcomes. J Pediatr Surg 49(1):82–86. doi:10.1016/j.jpedsurg.2013.09.033

    Google Scholar 

  192. Wielders EA, Hettinger J, Dekker R, Kets CM, Ligtenberg MJ, Mensenkamp AR, van den Ouweland AM, Prins J, Wagner A, Dinjens WN, Dubbink HJ, van Hest LP, Menko F, Hogervorst F, Verhoef S, Te Riele H (2014) Functional analysis of MSH2 unclassified variants found in suspected Lynch syndrome patients reveals pathogenicity due to attenuated mismatch repair. J Med Genet. doi:10.1136/jmedgenet-2013-101987

    Google Scholar 

  193. Ogino S, Liao X, Imamura Y, Yamauchi M, McCleary NJ, Ng K, Niedzwiecki D, Saltz LB, Mayer RJ, Whittom R, Hantel A, Benson AB 3rd, Mowat RB, Spiegelman D, Goldberg RM, Bertagnolli MM, Meyerhardt JA, Fuchs CS, Alliance for Clinical Trials in O (2013) Predictive and prognostic analysis of PIK3CA mutation in stage III colon cancer intergroup trial. J Natl Cancer Inst 105(23):1789–1798. doi:10.1093/jnci/djt298

    Google Scholar 

  194. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342. doi:10.1056/NEJMoa032691

    Google Scholar 

  195. Giantonio BJ, Catalano PJ, Meropol NJ, O’Dwyer PJ, Mitchell EP, Alberts SR, Schwartz MA, Benson AB 3rd (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 25(12):1539–1544. doi:10.1200/jco.2006.09.6305

    Google Scholar 

  196. Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, Canon JL, Van Laethem JL, Maurel J, Richardson G, Wolf M, Amado RG (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25(13):1658–1664. doi:10.1200/jco.2006.08.1620

    Google Scholar 

  197. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4):337–345. doi:10.1056/NEJMoa033025

    Google Scholar 

  198. Martinelli E, Troiani T, D’Aiuto E, Morgillo F, Vitagliano D, Capasso A, Costantino S, Ciuffreda LP, Merolla F, Vecchione L, De Vriendt V, Tejpar S, Nappi A, Sforza V, Martini G, Berrino L, De Palma R, Ciardiello F (2013) Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells. Int J Cancer 133(9):2089–2101. doi:10.1002/ijc.28236

    Google Scholar 

  199. Rychahou PG, Murillo CA, Evers BM (2005) Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis-inducing ligand (TRAIL). Surgery 138(2):391–397. doi:10.1016/j.surg.2005.05.012

    Google Scholar 

  200. Shoeb M, Ramana KV, Srivastava SK (2013) Aldose reductase inhibition enhances TRAIL-induced human colon cancer cell apoptosis through AKT/FOXO3a-dependent upregulation of death receptors. Free Radic Biol Med 63:280–290. doi:10.1016/j.freeradbiomed.2013.05.039

    Google Scholar 

  201. Jiang QG, Li TY, Liu DN, Zhang HT (2014) PI3K/Akt pathway involving into apoptosis and invasion in human colon cancer cells LoVo. Mol Biol Rep. doi:10.1007/s11033-014-3198-2

    Google Scholar 

  202. Li X, Stevens PD, Liu J, Yang H, Wang W, Wang C, Zeng Z, Schmidt MD, Yang M, Lee EY, Gao T (2014) PHLPP is a negative regulator of RAF1 that reduces colorectal cancer cell motility and prevents tumor progression in mice. Gastroenterology. doi:10.1053/j.gastro.2014.02.003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer W. Harris MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harris, J., Gao, T., Evers, B. (2015). The Role of PI3K Signaling Pathway in Intestinal Tumorigenesis. In: Yang, V., Bialkowska, A. (eds) Intestinal Tumorigenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-19986-3_4

Download citation

Publish with us

Policies and ethics