Skip to main content
  • 1032 Accesses

Abstract

Chronic myeloid leukaemia (CML) was the first leukaemia associated with a unique genetic abnormality, the Philadelphia chromosome. This results from a reciprocal translocation between chromosomes 9 and 22, which generates the BCR-ABL1 fusion gene encoding a constitutively active tyrosine kinase. The complex intracellular signalling initiated by BCR-ABL1 is responsible for disease development, and targeted tyrosine kinase inhibitors have been the most successful therapeutic advance in CML. In this chapter, we review the implications of BCR-ABL1 signalling in CML, how this knowledge revolutionized CML treatment, and discuss approaches to further improving therapeutic response by the targeting of leukaemic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piller G (2001) Leukaemia – a brief historical review from ancient times to 1950. Br J Haematol 112:282–292

    Article  CAS  PubMed  Google Scholar 

  2. Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497

    Google Scholar 

  3. Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    Article  CAS  PubMed  Google Scholar 

  4. Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315:550–554

    Article  CAS  PubMed  Google Scholar 

  5. Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:1079–1082

    Article  CAS  PubMed  Google Scholar 

  6. Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830

    Article  CAS  PubMed  Google Scholar 

  7. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566

    Article  CAS  PubMed  Google Scholar 

  8. Deininger MWN, Goldman JM, Lydon NB, Melo JV (1997) The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL positive cells. Blood 90:3691–3698

    CAS  PubMed  Google Scholar 

  9. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  CAS  PubMed  Google Scholar 

  10. Hoglund M, Sandin F, Hellstrom K, Bjoreman M, Bjorkholm M et al (2013) Tyrosine kinase inhibitor usage, treatment outcome, and prognostic scores in CML: report from the population-based Swedish CML registry. Blood 122:1284–1292

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Mendizabal AM, Garcia-Gonzalez P, Levine PH (2013) Regional variations in age at diagnosis and overall survival among patients with chronic myeloid leukemia from low and middle income countries. Cancer Epidemiol 37:247–254

    Article  PubMed  Google Scholar 

  12. Bizzozero OJ Jr, Johnson KG, Ciocco A (1966) Radiation-related leukemia in Hiroshima and Nagasaki, 1946–1964. I. Distribution, incidence and appearance time. N Engl J Med 274:1095–1101

    Article  PubMed  Google Scholar 

  13. Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J et al (2008) Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood 112:2199–2204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hehlmann R, Heimpel H, Hasford J, Kolb HJ, Pralle H et al (1993) Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: prolongation of survival by hydroxyurea. The German CML Study Group. Blood 82:398–407

    CAS  PubMed  Google Scholar 

  15. Savage DG, Szydlo RM, Goldman JM (1997) Clinical features at diagnosis in 430 patients with chronic myeloid leukaemia seen at a referral centre over a 16-year period. Br J Haematol 96:111–116

    Article  CAS  PubMed  Google Scholar 

  16. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB et al (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99:3530–3539

    Article  CAS  PubMed  Google Scholar 

  17. Vardiman JW, Melo JV, Baccarani M, Thiele J (2008) Chronic myelogenous leukaemia, BCR-ABL1 positive. In: Swerdlow SH, Campo E, Harris NL (eds) WHO classification of tumours of heaematopoietic and lymphoid tissues. International Agency for Research in Cancer (IARC), Lyon, pp 32–37

    Google Scholar 

  18. Wadhwa J, Szydlo RM, Apperley JF, Chase A, Bua M et al (2002) Factors affecting duration of survival after onset of blastic transformation of chronic myeloid leukemia. Blood 99:2304–2309

    Article  CAS  PubMed  Google Scholar 

  19. Radich JP (2012) Measuring response to BCR-ABL inhibitors in chronic myeloid leukemia. Cancer 118:300–311

    Article  CAS  PubMed  Google Scholar 

  20. Hehlmann R (2012) How I treat CML blast crisis. Blood 120:737–747

    Article  CAS  PubMed  Google Scholar 

  21. Melo JV, Gordon DE, Cross NC, Goldman JM (1993) The ABL-BCR fusion gene is expressed in chronic myeloid leukemia. Blood 81:158–165

    CAS  PubMed  Google Scholar 

  22. Melo JV (1996) The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype [editorial]. Blood 88:2375–2384

    CAS  PubMed  Google Scholar 

  23. Melo JV, Myint H, Galton DA, Goldman JM (1994) P190BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia 8:208–211

    CAS  PubMed  Google Scholar 

  24. Ravandi F, Cortes J, AlBitar M, Arlinghaus R, Qiang GJ et al (1999) Chronic myelogenous leukaemia with p185(BCR/ABL) expression: characteristics and clinical significance. Br J Haematol 107:581–586

    Article  CAS  PubMed  Google Scholar 

  25. Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F et al (1996) Neutrophilic-chronic myeloid leukemia (CML-N): a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 88:2410–2414

    CAS  PubMed  Google Scholar 

  26. Gotlib J, Maxson JE, George TI, Tyner JW (2013) The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment. Blood 122:1707–1711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Li S, Ilaria RL Jr, Million RP, Daley GQ, Van Etten RA (1999) The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 189:1399–1412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Deininger MW, Bose S, Gora TJ, Yan XH, Goldman JM et al (1998) Selective induction of leukemia-associated fusion genes by high-dose ionizing radiation. Cancer Res 58:421–425

    CAS  PubMed  Google Scholar 

  29. Neves H, Ramos C, da Silva MG, Parreira A, Parreira L (1999) The nuclear topography of ABL, BCR, PML, and RARalpha genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation [see comments]. Blood 93:1197–1207

    CAS  PubMed  Google Scholar 

  30. Saglio G, Storlazzi CT, Giugliano E, Surace C, Anelli L et al (2002) A 76-kb duplicon maps close to the BCR gene on chromosome 22 and the ABL gene on chromosome 9: possible involvement in the genesis of the Philadelphia chromosome translocation. Proc Natl Acad Sci U S A 99:9882–9887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Sinclair PB, Nacheva EP, Leversha M, Telford N, Chang J et al (2000) Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood 95:738–743

    CAS  PubMed  Google Scholar 

  32. Huntly BJ, Reid AG, Bench AJ, Campbell LJ, Telford N et al (2001) Deletions of the derivative chromosome 9 occur at the time of the Philadelphia translocation and provide a powerful and independent prognostic indicator in chronic myeloid leukemia. Blood 98:1732–1738

    Article  CAS  PubMed  Google Scholar 

  33. de la Fuente J, Merx K, Steer EJ, Muller M, Szydlo RM et al (2001) ABL-BCR expression does not correlate with deletions on the derivative chromosome 9 or survival in chronic myeloid leukemia. Blood 98:2879–2880

    Article  PubMed  Google Scholar 

  34. Quintas-Cardama A, Kantarjian H, Talpaz M, O’Brien S, Garcia-Manero G et al (2005) Imatinib mesylate therapy may overcome the poor prognostic significance of deletions of derivative chromosome 9 in patients with chronic myelogenous leukemia. Blood 105:2281–2286

    Article  CAS  PubMed  Google Scholar 

  35. Castagnetti F, Testoni N, Luatti S, Marzocchi G, Mancini M et al (2010) Deletions of the derivative chromosome 9 do not influence the response and the outcome of chronic myeloid leukemia in early chronic phase treated with imatinib mesylate: GIMEMA CML Working Party analysis. J Clin Oncol 28:2748–2754

    Article  CAS  PubMed  Google Scholar 

  36. Fialkow PJ, Martin PJ, Najfeld V, Penfold GK, Jacobson RJ et al (1981) Evidence for a multistep pathogenesis of chronic myelogenous leukemia. Blood 58:158–163

    CAS  PubMed  Google Scholar 

  37. Biernaux C, Sels A, Huez G, Stryckmans P (1996) Very low level of major BCR-ABL expression in blood of some healthy individuals. Bone Marrow Transplant 17(Suppl 3):S45–S47

    PubMed  Google Scholar 

  38. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92:3362–3367

    CAS  PubMed  Google Scholar 

  39. Pear WS, Miller JP, Xu L, Pui JC, Soffer B et al (1998) Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92:3780–3792

    CAS  PubMed  Google Scholar 

  40. Zhang X, Ren R (1998) Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 92:3829–3840

    CAS  PubMed  Google Scholar 

  41. McWhirter JR, Galasso DL, Wang JY (1993) A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 13:7587–7595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z et al (1993) BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75:175–185

    Article  CAS  PubMed  Google Scholar 

  43. Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON (1991) BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non- phosphotyrosine-dependent manner. Cell 66:161–171

    Article  CAS  PubMed  Google Scholar 

  44. Deininger MW, Vieira S, Mendiola R, Schultheis B, Goldman JM et al (2000) BCR-ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res 60:2049–2055

    CAS  PubMed  Google Scholar 

  45. Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112:4808–4817

    Article  CAS  PubMed  Google Scholar 

  46. Tauchi T, Feng GS, Shen R, Song HY, Donner D et al (1994) SH2-containing phosphotyrosine phosphatase Syp is a target of p210bcr- abl tyrosine kinase. J Biol Chem 269:15381–15387

    CAS  PubMed  Google Scholar 

  47. LaMontagne KR Jr, Flint AJ, Franza BR Jr, Pandergast AM, Tonks NK (1998) Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. Mol Cell Biol 18:2965–2975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW et al (2005) The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 8:355–368

    Article  CAS  PubMed  Google Scholar 

  49. Juan WC, Ong ST (2012) The role of protein phosphorylation in therapy resistance and disease progression in chronic myelogenous leukemia. Prog Mol Biol Transl Sci 106:107–142

    Article  CAS  PubMed  Google Scholar 

  50. Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD et al (1994) Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 269:22925–22928

    CAS  PubMed  Google Scholar 

  51. Pelicci G, Lanfrancone L, Salcini AE, Romano A, Mele S et al (1995) Constitutive phosphorylation of Shc proteins in human tumors. Oncogene 11:899–907

    CAS  PubMed  Google Scholar 

  52. Cahill MA, Janknecht R, Nordheim A (1996) Signalling pathways: jack of all cascades. Curr Biol 6:16–19

    Article  CAS  PubMed  Google Scholar 

  53. Skorski T, Wlodarski P, Daheron L, Salomoni P, Nieborowska-Skorska M et al (1998) BCR/ABL-mediated leukemogenesis requires the activity of the small GTP- binding protein Rac. Proc Natl Acad Sci U S A 95:11858–11862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL (1995) The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci U S A 92:11746–11750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Yang MY, Liu TC, Chang JG, Lin PM, Lin SF (2003) JunB gene expression is inactivated by methylation in chronic myeloid leukemia. Blood 101:3205–3211

    Article  CAS  PubMed  Google Scholar 

  56. Thomas EK, Cancelas JA, Zheng Y, Williams DA (2008) Rac GTPases as key regulators of p210-BCR-ABL-dependent leukemogenesis. Leukemia 22:898–904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Thomas EK, Cancelas JA, Chae HD, Cox AD, Keller PJ et al (2007) Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell 12:467–478

    Article  CAS  PubMed  Google Scholar 

  58. Ilaria RL Jr, Van Etten RA (1996) P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 271:31704–31710

    Article  CAS  PubMed  Google Scholar 

  59. Chai SK, Nichols GL, Rothman P (1997) Constitutive activation of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells derived from leukemic patients. J Immunol 159:4720–4728

    CAS  PubMed  Google Scholar 

  60. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T et al (1999) Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 189:1229–1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Horita M, Andreu EJ, Benito A, Arbona C, Sanz C et al (2000) Blockade of the bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of bcl-x(L). J Exp Med 191:977–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Quintas-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113:1619–1630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Sexl V, Piekorz R, Moriggl R, Rohrer J, Brown MP et al (2000) Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood 96:2277–2283

    CAS  PubMed  Google Scholar 

  64. Hoelbl A, Kovacic B, Kerenyi MA, Simma O, Warsch W et al (2006) Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood 107:4898–4906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Kantarjian HM, Giles F, Quintas-Cardama A, Cortes J (2007) Important therapeutic targets in chronic myelogenous leukemia. Clin Cancer Res 13:1089–1097

    Article  CAS  PubMed  Google Scholar 

  66. Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA et al (1996) The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3′ kinase pathway. Oncogene 12:839–846

    CAS  PubMed  Google Scholar 

  67. Shortt J, Johnstone RW (2012) Oncogenes in cell survival and cell death. Cold Spring Harb Perspect Biol 4:a009829

    Google Scholar 

  68. Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC et al (1995) Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86:726–736

    CAS  PubMed  Google Scholar 

  69. Middleton MK, Zukas AM, Rubinstein T, Jacob M, Zhu P et al (2006) Identification of 12/15-lipoxygenase as a suppressor of myeloproliferative disease. J Exp Med 203:2529–2540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–689

    Article  PubMed  Google Scholar 

  71. Sawyers CL, Callahan W, Witte ON (1992) Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70:901–910

    Article  CAS  PubMed  Google Scholar 

  72. Zou X, Rudchenko S, Wong K, Calame K (1997) Induction of c-myc transcription by the v-Abl tyrosine kinase requires Ras, Raf1, and cyclin-dependent kinases. Genes Dev 11:654–662

    Article  CAS  PubMed  Google Scholar 

  73. Johansson B, Fioretos T, Mitelman F (2002) Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 107:76–94

    Article  CAS  PubMed  Google Scholar 

  74. Melo JV, Barnes DJ (2007) Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 7:441–453

    Article  CAS  PubMed  Google Scholar 

  75. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667

    Article  CAS  PubMed  Google Scholar 

  76. Zhao C, Blum J, Chen A, Kwon HY, Jung SH et al (2007) Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12:528–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Chen R, Hu T, Mahon GM, Tala I, Pannucci NL et al (2013) Ubiquitin-mediated interaction of p210 BCR/ABL with beta-catenin supports disease progression in a murine model for chronic myelogenous leukemia. Blood 122:2114–2124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G et al (2002) BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 30:48–58

    Article  CAS  PubMed  Google Scholar 

  79. Neviani P (2014) Genetic events other than BCR-ABL1. Curr Hematol Malig Rep 9:24–32

    Article  PubMed  Google Scholar 

  80. Smith LT, Hohaus S, Gonzalez DA, Dziennis SE, Tenen DG (1996) PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony-stimulating factor receptor promoter in myeloid cells. Blood 88:1234–1247

    CAS  PubMed  Google Scholar 

  81. Ferrari-Amorotti G, Keeshan K, Zattoni M, Guerzoni C, Iotti G et al (2006) Leukemogenesis induced by wild-type and STI571-resistant BCR/ABL is potently suppressed by C/EBPalpha. Blood 108:1353–1362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Guerzoni C, Bardini M, Mariani SA, Ferrari-Amorotti G, Neviani P et al (2006) Inducible activation of CEBPB, a gene negatively regulated by BCR/ABL, inhibits proliferation and promotes differentiation of BCR/ABL-expressing cells. Blood 107:4080–4089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Wagner K, Zhang P, Rosenbauer F, Drescher B, Kobayashi S et al (2006) Absence of the transcription factor CCAAT enhancer binding protein alpha results in loss of myeloid identity in bcr/abl-induced malignancy. Proc Natl Acad Sci U S A 103:6338–6343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Zhang SJ, Ma LY, Huang QH, Li G, Gu BW et al (2008) Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc Natl Acad Sci U S A 105:2076–2081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Zhang SJ, Shi JY, Li JY (2009) GATA-2 L359 V mutation is exclusively associated with CML progression but not other hematological malignancies and GATA-2 P250A is a novel single nucleotide polymorphism. Leuk Res 33:1141–1143

    Article  CAS  PubMed  Google Scholar 

  86. Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M et al (1994) Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J 13:504–510

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Grossmann V, Kohlmann A, Zenger M, Schindela S, Eder C et al (2011) A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9 % of cases. Leukemia 25:557–560

    Article  CAS  PubMed  Google Scholar 

  88. Zhao LJ, Wang YY, Li G, Ma LY, Xiong SM et al (2012) Functional features of RUNX1 mutants in acute transformation of chronic myeloid leukemia and their contribution to inducing murine full-blown leukemia. Blood 119:2873–2882

    Article  CAS  PubMed  Google Scholar 

  89. Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J et al (2002) Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99:121–129

    Article  CAS  PubMed  Google Scholar 

  90. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J et al (2008) BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453:110–114

    Article  CAS  PubMed  Google Scholar 

  91. Suzuki K, Ono R, Ohishi K, Masuya M, Kataoka I et al (2012) IKAROS isoform 6 enhances BCR-ABL1-mediated proliferation of human CD34+ hematopoietic cells on stromal cells. Int J Oncol 40:53–62

    CAS  PubMed  Google Scholar 

  92. Casolari DA, Makri M, Yoshida C, Muto A, Igarashi K et al (2013) Transcriptional suppression of BACH2 by the Bcr-Abl oncoprotein is mediated by PAX5. Leukemia 27:409–415

    Article  CAS  PubMed  Google Scholar 

  93. Skorski T (2012) Genetic mechanisms of chronic myeloid leukemia blastic transformation. Curr Hematol Malig Rep 7:87–93

    Article  PubMed  Google Scholar 

  94. Perrotti D, Jamieson C, Goldman J, Skorski T (2010) Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 120:2254–2264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M et al (2003) An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell 11:203–213

    Article  CAS  PubMed  Google Scholar 

  96. Dierov J, Dierova R, Carroll M (2004) BCR/ABL translocates to the nucleus and disrupts an ATR-dependent intra-S phase checkpoint. Cancer Cell 5:275–285

    Article  CAS  PubMed  Google Scholar 

  97. Nieborowska-Skorska M, Stoklosa T, Datta M, Czechowska A, Rink L et al (2006) ATR-Chk1 axis protects BCR/ABL leukemia cells from the lethal effect of DNA double-strand breaks. Cell Cycle 5:994–1000

    Article  CAS  PubMed  Google Scholar 

  98. Kurosu T, Nagao T, Wu N, Oshikawa G, Miura O (2013) Inhibition of the PI3K/Akt/GSK3 pathway downstream of BCR/ABL, Jak2-V617F, or FLT3-ITD downregulates DNA damage-induced Chk1 activation as well as G2/M arrest and prominently enhances induction of apoptosis. PLoS One 8:e79478

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Foulkes WD, Shuen AY (2013) In brief: BRCA1 and BRCA2. J Pathol 230:347–349

    Article  CAS  PubMed  Google Scholar 

  100. Deutsch E, Jarrousse S, Buet D, Dugray A, Bonnet ML et al (2003) Down-regulation of BRCA1 in BCR-ABL-expressing hematopoietic cells. Blood 101:4583–4588

    Article  CAS  PubMed  Google Scholar 

  101. Valeri A, Alonso-Ferrero ME, Rio P, Pujol MR, Casado JA et al (2010) Bcr/Abl interferes with the Fanconi anemia/BRCA pathway: implications in the chromosomal instability of chronic myeloid leukemia cells. PLoS ONE 5:e15525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Feng Z, Scott SP, Bussen W, Sharma GG, Guo G et al (2011) Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc Natl Acad Sci U S A 108:686–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Cramer-Morales K, Nieborowska-Skorska M, Scheibner K, Padget M, Irvine DA et al (2013) Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile. Blood 122:1293–1304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T et al (2004) BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 104:3746–3753

    Article  CAS  PubMed  Google Scholar 

  105. Deutsch E, Dugray A, AbdulKarim B, Marangoni E, Maggiorella L et al (2001) BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood 97:2084–2090

    Article  CAS  PubMed  Google Scholar 

  106. Brady N, Gaymes TJ, Cheung M, Mufti GJ, Rassool FV (2003) Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res 63:1798–1805

    CAS  PubMed  Google Scholar 

  107. Sallmyr A, Tomkinson AE, Rassool FV (2008) Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood 112:1413–1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Salles D, Mencalha AL, Ireno IC, Wiesmuller L, Abdelhay E (2011) BCR-ABL stimulates mutagenic homologous DNA double-strand break repair via the DNA-end-processing factor CtIP. Carcinogenesis 32:27–34

    Article  CAS  PubMed  Google Scholar 

  109. Dubrez L, Eymin B, Sordet O, Droin N, Turhan AG et al (1998) BCR-ABL delays apoptosis upstream of procaspase-3 activation. Blood 91:2415–2422

    CAS  PubMed  Google Scholar 

  110. Slupianek A, Schmutte C, Tombline G, Nieborowska-Skorska M, Hoser G et al (2001) BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance. Mol Cell 8:795–806

    Article  CAS  PubMed  Google Scholar 

  111. Slupianek A, Dasgupta Y, Ren SY, Gurdek E, Donlin M et al (2011) Targeting RAD51 phosphotyrosine-315 to prevent unfaithful recombination repair in BCR-ABL1 leukemia. Blood 118:1062–1068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Stoklosa T, Poplawski T, Koptyra M, Nieborowska-Skorska M, Basak G et al (2008) BCR/ABL inhibits mismatch repair to protect from apoptosis and induce point mutations. Cancer Res 68:2576–2580

    Article  CAS  PubMed  Google Scholar 

  113. Cramer K, Nieborowska-Skorska M, Koptyra M, Slupianek A, Penserga ET et al (2008) BCR/ABL and other kinases from chronic myeloproliferative disorders stimulate single-strand annealing, an unfaithful DNA double-strand break repair. Cancer Res 68:6884–6888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Takeda N, Shibuya M, Maru Y (1999) The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein. Proc Natl Acad Sci U S A 96:203–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Maru Y, Bergmann E, Coin F, Egly JM, Shibuya M (2001) TFIIH functions are altered by the P210BCR-ABL oncoprotein produced on the Philadelphia chromosome. Mutat Res 483:83–88

    Article  CAS  PubMed  Google Scholar 

  116. Canitrot Y, Falinski R, Louat T, Laurent G, Cazaux C et al (2003) p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood 102:2632–2637

    Article  CAS  PubMed  Google Scholar 

  117. Sliwinski T, Czechowska A, Szemraj J, Morawiec Z, Skorski T et al (2008) STI571 reduces NER activity in BCR/ABL-expressing cells. Mutat Res 654:162–167

    Article  CAS  PubMed  Google Scholar 

  118. Canitrot Y, Lautier D, Laurent G, Frechet M, Ahmed A et al (1999) Mutator phenotype of BCR–ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase beta. Oncogene 18:2676–2680

    Article  CAS  PubMed  Google Scholar 

  119. Canitrot Y, Laurent G, Astarie-Dequeker C, Bordier C, Cazaux C et al (2006) Enhanced expression and activity of DNA polymerase beta in chronic myelogenous leukemia. Anticancer Res 26:523–525

    CAS  PubMed  Google Scholar 

  120. Canitrot Y, Hoffmann JS, Calsou P, Hayakawa H, Salles B et al (2000) Nucleotide excision repair DNA synthesis by excess DNA polymerase beta: a potential source of genetic instability in cancer cells. FASEB J 14:1765–1774

    Article  CAS  PubMed  Google Scholar 

  121. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374

    Article  CAS  PubMed  Google Scholar 

  122. Canitrot Y, Capp JP, Puget N, Bieth A, Lopez B et al (2004) DNA polymerase beta overexpression stimulates the Rad51-dependent homologous recombination in mammalian cells. Nucleic Acids Res 32:5104–5112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Slupianek A, Falinski R, Znojek P, Stoklosa T, Flis S et al (2013) BCR-ABL1 kinase inhibits uracil DNA glycosylase UNG2 to enhance oxidative DNA damage and stimulate genomic instability. Leukemia 27:629–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Quintas-Cardama A (2008) Experimental non-ATP-competitive therapies for chronic myelogenous leukemia. Leukemia 22:932–940

    Article  CAS  PubMed  Google Scholar 

  125. Rohon P (2012) Biological therapy and the immune system in patients with chronic myeloid leukemia. Int J Hematol 96:1–9

    Article  CAS  PubMed  Google Scholar 

  126. Kaymaz BT, Selvi N, Gokbulut AA, Aktan C, Gunduz C et al (2013) Suppression of STAT5A and STAT5B chronic myeloid leukemia cells via siRNA and antisense-oligonucleotide applications with the induction of apoptosis. Am J Blood Res 3:58–70

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Kaymaz BT, Selvi N, Gunduz C, Aktan C, Dalmizrak A et al (2013) Repression of STAT3, STAT5A, and STAT5B expressions in chronic myelogenous leukemia cell line K-562 with unmodified or chemically modified siRNAs and induction of apoptosis. Ann Hematol 92:151–162

    Article  CAS  PubMed  Google Scholar 

  128. Koldehoff M, Zakrzewski JL, Beelen DW, Elmaagacli AH (2013) Additive antileukemia effects by GFI1B- and BCR-ABL-specific siRNA in advanced phase chronic myeloid leukemic cells. Cancer Gene Ther 20:421–427

    Article  CAS  PubMed  Google Scholar 

  129. Liu Y, Song Y, Ma W, Zheng W, Yin H (2013) Decreased microRNA-30a levels are associated with enhanced ABL1 and BCR-ABL1 expression in chronic myeloid leukemia. Leuk Res 37:349–356

    Article  PubMed  CAS  Google Scholar 

  130. Li Y, Wang H, Tao K, Xiao Q, Huang Z et al (2013) miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein. Exp Cell Res 319:1094–1101

    Article  CAS  PubMed  Google Scholar 

  131. Schurch CM, Riether C, Ochsenbein AF (2013) Dendritic cell-based immunotherapy for myeloid leukemias. Front Immunol 4:496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Valencia-Serna J, Gul-Uludag H, Mahdipoor P, Jiang X, Uludag H (2013) Investigating siRNA delivery to chronic myeloid leukemia K562 cells with lipophilic polymers for therapeutic BCR-ABL down-regulation. J Control Release 172:495–503

    Article  CAS  PubMed  Google Scholar 

  133. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M et al (1996) Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 56:100–104

    CAS  PubMed  Google Scholar 

  134. Okuda K, Weisberg E, Gilliland DG, Griffin JD (2001) ARG tyrosine kinase activity is inhibited by STI571. Blood 97:2440–2448

    Article  CAS  PubMed  Google Scholar 

  135. Savage DG, Antman KH (2002) Imatinib mesylate – a new oral targeted therapy. N Engl J Med 346:683–693

    Article  CAS  PubMed  Google Scholar 

  136. le Coutre P, Mologni L, Cleris L, Marchesi E, Buchdunger E et al (1999) In vivo eradication of human BCR/ABL positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 91:163–168

    Article  PubMed  Google Scholar 

  137. Druker BJ, Talpaz M, Resta D, Peng B, Buchdunger E et al (1999) Clinical efficacy and safety of an Abl specific tyrosine kinase inhibitor as targeted therapy for chronic myelogenous leukemia [abstract]. Blood 94:368a

    Google Scholar 

  138. Deininger M, O’Brien SG, Guilhot F, Goldman JM, Hochhaus A et al (2009) International randomized study of interferon vs STI571 (IRIS) 8-year follow up: sustained survival and low risk for progression or events in patients with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with imatinib [abstract]. Blood (ASH Annual Meeting Abstracts) 114:1126

    Google Scholar 

  139. Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R et al (2003) Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol 4:75–85

    Article  PubMed  Google Scholar 

  140. Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J et al (2000) Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96:1070–1079

    CAS  PubMed  Google Scholar 

  141. Weisberg E, Griffin JD (2000) Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 95:3498–3505

    CAS  PubMed  Google Scholar 

  142. le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L et al (2000) Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 95:1758–1766

    PubMed  Google Scholar 

  143. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  CAS  PubMed  Google Scholar 

  144. Diamond JM, Melo JV (2011) Mechanisms of resistance to BCR-ABL kinase inhibitors. Leuk Lymphoma 52(Suppl 1):12–22

    Article  CAS  PubMed  Google Scholar 

  145. Apperley JF (2007) Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol 8:1018–1029

    Article  CAS  PubMed  Google Scholar 

  146. Soverini S, Branford S, Nicolini FE, Talpaz M, Deininger MW et al (2014) Implications of BCR-ABL1 kinase domain-mediated resistance in chronic myeloid leukemia. Leuk Res 38:10–20

    Article  CAS  PubMed  Google Scholar 

  147. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC et al (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16:2190–2196

    Article  CAS  PubMed  Google Scholar 

  148. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL et al (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125

    Article  CAS  PubMed  Google Scholar 

  149. Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A et al (2003) Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 102:276–283

    Article  CAS  PubMed  Google Scholar 

  150. Soverini S, Colarossi S, Gnani A, Rosti G, Castagnetti F et al (2006) Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res 12:7374–7379

    Article  CAS  PubMed  Google Scholar 

  151. Nicolini FE, Corm S, Le QH, Sorel N, Hayette S et al (2006) Mutation status and clinical outcome of 89 imatinib mesylate-resistant chronic myelogenous leukemia patients: a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP). Leukemia 20:1061–1066

    Article  CAS  PubMed  Google Scholar 

  152. Khorashad JS, Milojkovic D, Mehta P, Anand M, Ghorashian S et al (2008) In vivo kinetics of kinase domain mutations in CML patients treated with dasatinib after failing imatinib. Blood 111:2378–2381

    Article  CAS  PubMed  Google Scholar 

  153. Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR et al (2002) Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 62:4236–4243

    CAS  PubMed  Google Scholar 

  154. Jabbour E, Soverini S (2009) Understanding the role of mutations in therapeutic decision making for chronic myeloid leukemia. Semin Hematol 46:S22–S26

    Article  CAS  PubMed  Google Scholar 

  155. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC et al (2004) Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47:6658–6661

    Article  CAS  PubMed  Google Scholar 

  156. Cortes JE, Jones D, O’Brien S, Jabbour E, Ravandi F et al (2010) Results of dasatinib therapy in patients with early chronic-phase chronic myeloid leukemia. J Clin Oncol 28:398–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S et al (2010) Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 362:2260–2270

    Article  CAS  PubMed  Google Scholar 

  158. Kantarjian H, Cortes J, Kim DW, Dorlhiac-Llacer P, Pasquini R et al (2009) Phase 3 study of dasatinib 140 mg once daily versus 70 mg twice daily in patients with chronic myeloid leukemia in accelerated phase resistant or intolerant to imatinib: 15-month median follow-up. Blood 113:6322–6329

    Article  CAS  PubMed  Google Scholar 

  159. Cortes J, Jabbour E, Kantarjian H, Yin CC, Shan J et al (2007) Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors. Blood 110:4005–4011

    Article  CAS  PubMed  Google Scholar 

  160. Jabbour E, Kantarjian HM, Jones D, Reddy N, O’Brien S et al (2008) Characteristics and outcome of chronic myeloid leukemia patients with F317L BCR-ABL kinase domain mutation after therapy with tyrosine kinase inhibitors. Blood 112:4839–4842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Jabbour E, Kantarjian H, Jones D, Breeden M, Garcia-Manero G et al (2008) Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy. Blood 112:53–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Muller MC, Cortes JE, Kim DW, Druker BJ, Erben P et al (2009) Dasatinib treatment of chronic-phase chronic myeloid leukemia: analysis of responses according to preexisting BCR-ABL mutations. Blood 114:4944–4953

    Article  PubMed  CAS  Google Scholar 

  163. Tokarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M et al (2006) The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res 66:5790–5797

    Article  CAS  PubMed  Google Scholar 

  164. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141

    Article  CAS  PubMed  Google Scholar 

  165. Cortes JE, Jones D, O’Brien S, Jabbour E, Konopleva M et al (2010) Nilotinib as front-line treatment for patients with chronic myeloid leukemia in early chronic phase. J Clin Oncol 28:392–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Larson RA, Hochhaus A, Hughes TP, Clark RE, Etienne G et al (2012) Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia 26:2197–2203

    Article  CAS  PubMed  Google Scholar 

  167. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S et al (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354:2542–2551

    Article  PubMed  Google Scholar 

  168. Kantarjian H, O’Brien S, Talpaz M, Borthakur G, Ravandi F et al (2007) Outcome of patients with Philadelphia chromosome-positive chronic myelogenous leukemia post-imatinib mesylate failure. Cancer 109:1556–1560

    Google Scholar 

  169. le Coutre P, Ottmann OG, Giles F, Kim DW, Cortes J et al (2008) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 111:1834–1839

    Article  PubMed  CAS  Google Scholar 

  170. Hughes T, Saglio G, Branford S, Soverini S, Kim DW et al (2009) Impact of baseline BCR-ABL mutations on response to nilotinib in patients with chronic myeloid leukemia in chronic phase. J Clin Oncol 27:4204–4210

    Article  CAS  PubMed  Google Scholar 

  171. Cortes JE, Kim DW, Kantarjian HM, Brummendorf TH, Dyagil I et al (2012) Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol 30:3486–3492

    Article  CAS  PubMed  Google Scholar 

  172. Cortes JE, Kantarjian HM, Brummendorf TH, Kim DW, Turkina AG et al (2011) Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood 118:4567–4576

    Article  CAS  PubMed  Google Scholar 

  173. O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM et al (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16:401–412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  174. Cortes JE, Kim DW, Pinilla-Ibarz J, Le Coutre PD, Paquette R et al (2013) A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 369:1783–1796

    Article  CAS  PubMed  Google Scholar 

  175. Chan WW, Wise SC, Kaufman MD, Ahn YM, Ensinger CL et al (2011) Conformational control inhibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper T315I mutant, by the switch-control inhibitor DCC-2036. Cancer Cell 19:556–568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Eide CA, Adrian LT, Tyner JW, Mac PM, Anderson DJ et al (2011) The ABL switch control inhibitor DCC-2036 is active against the chronic myeloid leukemia mutant BCR-ABLT315I and exhibits a narrow resistance profile. Cancer Res 71:3189–3195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Cortes JE, Talpaz M, Kantarjian HM, Smith H, Bixby D et al (2011) A phase 1 study o DCC-2036, a novel oral inhibitor of BCR-ABL kinase, in patients with Philadelphia chromosome positive (Ph+) leukemias including patients with T315I mutation. [abstract]. Blood (ASH Annual Meeting Abstracts) 118:601

    Google Scholar 

  178. Melo JV, Ross DM (2011) Minimal residual disease and discontinuation of therapy in chronic myeloid leukemia: can we aim at a cure? Hematology. Am Soc Hematol Educ Program 2011:136–142

    Article  Google Scholar 

  179. Kinstrie R, Copland M (2013) Targeting chronic myeloid leukemia stem cells. Curr Hematol Malig Rep 8:14–21

    Article  PubMed  Google Scholar 

  180. Holyoake T, Jiang X, Eaves C, Eaves A (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94:2056–2064

    CAS  PubMed  Google Scholar 

  181. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ et al (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99:319–325

    Article  CAS  PubMed  Google Scholar 

  182. Holtz MS, Slovak ML, Zhang F, Sawyers CL, Forman SJ et al (2002) Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood 99:3792–3800

    Article  CAS  PubMed  Google Scholar 

  183. Holtz MS, Forman SJ, Nonproliferating BR, CML (2005) CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia 19:1034–1041

    Article  CAS  PubMed  Google Scholar 

  184. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK et al (2006) Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 107:4532–4539

    Article  CAS  PubMed  Google Scholar 

  185. Jorgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL (2007) Nilotinib exerts equipotent anti-proliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 109:4016–4019

    Google Scholar 

  186. Konig H, Holtz M, Modi H, Manley P, Holyoake TL et al (2008) Enhanced BCR-ABL kinase inhibition does not result in increased inhibition of downstream signaling pathways or increased growth suppression in CML progenitors. Leukemia 22:748–755

    Article  CAS  PubMed  Google Scholar 

  187. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW et al (2011) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121:396–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S et al (2012) Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 119:1501–1510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Jorgensen HG, Copland M, Allan EK, Jiang X, Eaves A et al (2006) Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clin Cancer Res 12:626–633

    Article  CAS  PubMed  Google Scholar 

  190. Holtz M, Forman SJ, Bhatia R (2007) Growth factor stimulation reduces residual quiescent chronic myelogenous leukemia progenitors remaining after imatinib treatment. Cancer Res 67:1113–1120

    Article  CAS  PubMed  Google Scholar 

  191. Drummond MW, Heaney N, Kaeda J, Nicolini FE, Clark RE et al (2009) A pilot study of continuous imatinib vs pulsed imatinib with or without G-CSF in CML patients who have achieved a complete cytogenetic response. Leukemia 23:1199–1201

    Article  CAS  PubMed  Google Scholar 

  192. Barnes DJ, Melo JV (2006) Primitive, quiescent and difficult to kill: the role of non-proliferating stem cells in chronic myeloid leukemia. Cell Cycle 5:2862–2866

    Article  CAS  PubMed  Google Scholar 

  193. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458:776–779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  194. Crews LA, Jamieson CH (2013) Selective elimination of leukemia stem cells: hitting a moving target. Cancer Lett 338:15–22

    Article  CAS  PubMed  Google Scholar 

  195. Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR et al (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14:238–249

    Article  CAS  PubMed  Google Scholar 

  196. Heidel FH, Bullinger L, Feng Z, Wang Z, Neff TA et al (2012) Genetic and pharmacologic inhibition of beta-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell 10:412–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Kuroda J, Shimura Y, Yamamoto-Sugitani M, Sasaki N, Taniwaki M (2013) Multifaceted mechanisms for cell survival and drug targeting in chronic myelogenous leukemia. Curr Cancer Drug Targets 13:69–79

    Article  CAS  PubMed  Google Scholar 

  198. Li X, Miao H, Zhang Y, Li W, Li Z et al (2015) Bone marrow microenvironment confers imatinib resistance to chronic myelogenous leukemia and oroxylin A reverses the resistance by suppressing Stat3 pathway. Arch Toxicol 89:121–136

    Google Scholar 

  199. Weisberg E, Azab AK, Manley PW, Kung AL, Christie AL et al (2012) Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia 26:985–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Beider K, rash-Yahana M, Blaier O, Koren-Michowitz M, Abraham M et al (2014) Combination of imatinib with CXCR4 antagonist BKT140 overcomes the protective effect of stroma and targets CML in vitro and in vivo. Mol Cancer Ther 13:1155–1169

    Google Scholar 

  201. Agarwal A, Fleischman AG, Petersen CL, MacKenzie R, Luty S et al (2012) Effects of plerixafor in combination with BCR-ABL kinase inhibition in a murine model of CML. Blood 120:2658–2668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  202. Copland M, Pellicano F, Richmond L, Allan EK, Hamilton A et al (2008) BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood 111:2843–2853

    Article  CAS  PubMed  Google Scholar 

  203. Pellicano F, Simara P, Sinclair A, Helgason GV, Copland M et al (2011) The MEK inhibitor PD184352 enhances BMS-214662-induced apoptosis in CD34+ CML stem/progenitor cells. Leukemia 25:1159–1167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  204. Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M et al (2007) FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 117:2408–2421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  205. Agarwal A, Mackenzie RJ, Pippa R, Eide CA, Oddo J et al (2014) Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcomes drug resistance in myeloid leukemia. Clin Cancer Res 20:2092–2103

    Google Scholar 

  206. Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ et al (2013) PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest 123:4144–4157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  207. Chen Y, Hu Y, Zhang H, Peng C, Li S (2009) Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet 41:783–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  208. Chen Y, Hu Y, Michaels S, Segal D, Brown D et al (2009) Inhibitory effects of omacetaxine on leukemic stem cells and BCR-ABL-induced chronic myeloid leukemia and acute lymphoblastic leukemia in mice. Leukemia 23:1446–1454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  209. Robert F, Carrier M, Rawe S, Chen S, Lowe S et al (2009) Altering chemosensitivity by modulating translation elongation. PLoS ONE 4:e5428

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  210. Goff DJ, Court R, Sadarangani A, Chun HJ, Barrett CL et al (2013) A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell 12:316–328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. Hurtz C, Hatzi K, Cerchietti L, Braig M, Park E et al (2011) BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J Exp Med 208:2163–2174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  212. Zhang H, Peng C, Hu Y, Li H, Sheng Z et al (2012) The Blk pathway functions as a tumor suppressor in chronic myeloid leukemia stem cells. Nat Genet 44:861–871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  213. Schurch C, Riether C, Matter MS, Tzankov A, Ochsenbein AF (2012) CD27 signaling on chronic myelogenous leukemia stem cells activates Wnt target genes and promotes disease progression. J Clin Invest 122:624–638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  214. Krause DS, Lazarides K, von Andrian UH, Van Etten RA (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 12:1175–1180

    Article  CAS  PubMed  Google Scholar 

  215. Goessling W, North TE, Loewer S, Lord AM, Lee S et al (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136:1136–1147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  216. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T et al (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463:676–680

    Article  CAS  PubMed  Google Scholar 

  217. Yamamoto-Sugitani M, Kuroda J, Ashihara E, Nagoshi H, Kobayashi T et al (2011) Galectin-3 (Gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia. Proc Natl Acad Sci U S A 108:17468–17473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  218. Reddiconto G, Toto C, Palama I, De Leo S, de Luca E et al (2012) Targeting of GSK3beta promotes imatinib-mediated apoptosis in quiescent CD34+ chronic myeloid leukemia progenitors, preserving normal stem cells. Blood 119:2335–2345

    Article  CAS  PubMed  Google Scholar 

  219. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y (2011) Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8:399–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  220. Zhang H, Li H, Xi HS, Li S (2012) HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood 119:2595–2607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  221. Peng C, Brain J, Hu Y, Goodrich A, Kong L et al (2007) Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells. Blood 110:678–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  222. Chen M, Gallipoli P, DeGeer D, Sloma I, Forrest DL et al (2013) Targeting primitive chronic myeloid leukemia cells by effective inhibition of a new AHI-1-BCR-ABL-JAK2 complex. J Natl Cancer Inst 105:405–423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  223. Lim S, Saw TY, Zhang M, Janes MR, Nacro K et al (2013) Targeting of the MNK-eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function. Proc Natl Acad Sci U S A 110:E2298–E2307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  224. Chen Y, Sullivan C, Peng C, Shan Y, Hu Y et al (2011) A tumor suppressor function of the Msr1 gene in leukemia stem cells of chronic myeloid leukemia. Blood 118:390–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  225. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G et al (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453:1072–1078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  226. Peng C, Chen Y, Yang Z, Zhang H, Osterby L et al (2010) PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice. Blood 115:626–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  227. Zhang H, Li H, Ho N, Li D, Li S (2012) Scd1 plays a tumor-suppressive role in survival of leukemia stem cells and the development of chronic myeloid leukemia. Mol Cell Biol 32:1776–1787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  228. Pelletier SD, Hong DS, Hu Y, Liu Y, Li S (2004) Lack of the adhesion molecules P-selectin and intercellular adhesion molecule-1 accelerate the development of BCR/ABL-induced chronic myeloid leukemia-like myeloproliferative disease in mice. Blood 104:2163–2171

    Article  CAS  PubMed  Google Scholar 

  229. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102:9194–9199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  230. Sullivan C, Chen Y, Shan Y, Hu Y, Peng C et al (2011) Functional ramifications for the loss of P-selectin expression on hematopoietic and leukemic stem cells. PLoS ONE 6:e26246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  231. Oakley K, Han Y, Vishwakarma BA, Chu S, Bhatia R et al (2012) Setbp1 promotes the self-renewal of murine myeloid progenitors via activation of Hoxa9 and Hoxa10. Blood 119:6099–6108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  232. Yuan H, Wang Z, Li L, Zhang H, Modi H et al (2012) Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood 119:1904–1914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  233. Li L, Wang L, Li L, Wang Z, Ho Y et al (2012) Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21:266–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  234. Zhang B, Irvine D, Ho YW, Buonamici M, Manley P et al (2010) Inhibition of chronic myeloid leukemia stem cells by the combination of the Hedgehog pathway inhibitor LDE225 with nilotinib [abstract]. Blood (ASH Annual Meeting Abstracts) 116:514

    Google Scholar 

  235. Jamieson C, Cortes JE, Oehler V, Baccaranni M, Kantarjian HM et al (2011) Phase 1 dose-escalation study of PF-04449913, an oral hedgehog (Hh) inhibitor, in patients with select hematologic malignancies [abstract]. Blood (ASH Annual Meeting Abstracts) 118:424

    Google Scholar 

  236. Katagiri S, Tauchi T, Okabe S, Minami Y, Kimura S et al (2013) Combination of ponatinib with Hedgehog antagonist vismodegib for therapy-resistant BCR-ABL1-positive leukemia. Clin Cancer Res 19:1422–1432

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junia V. Melo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casolari, D.A., Melo, J.V. (2015). Chronic Myeloid Leukaemia. In: Rowley, J., Le Beau, M., Rabbitts, T. (eds) Chromosomal Translocations and Genome Rearrangements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-19983-2_7

Download citation

Publish with us

Policies and ethics