Skip to main content
  • 946 Accesses

Abstract

Disease-causing chromosomal translocations tend to cause the up-regulated expression of proteins, or result in fusion proteins with altered functionality. Four sets of chromosomal translocations are presented as case studies to illustrate how the protein products of chromosomal translocations disrupt normal cellular processes through a range of different mechanisms. For translocations affecting LMO2 and MYC expression, alterations to transcriptional regulation ultimately cause disease. In the case of the Philadelphia Chromosome, BCR-ABL1 disrupts cell signalling and cell cycle regulation by generating an always active form of the ABL1 tyrosine kinase. Upregulation of BCL2 blocks apoptosis. In each case the molecular basis of activity, and strategies for inhibition by directly targeting the disease causing proteins are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jadayel DM, Lukas J, Nacheva E, Bartkova J, Stranks G, De Schouwer PJ et al (1997) Potential role for concurrent abnormalities of the cyclin D1, p16CDKN2 and p15CDKN2B genes in certain B cell non-Hodgkin’s lymphomas. Functional studies in a cell line (Granta 519). Leukemia 11(1):64–72

    Article  CAS  PubMed  Google Scholar 

  2. Romei C, Elisei R (2012) RET/PTC translocations and clinico-pathological features in human papillary thyroid carcinoma. Front Endocrinol 3:54

    Article  CAS  Google Scholar 

  3. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM et al (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289(5483):1357–1360

    Article  CAS  PubMed  Google Scholar 

  4. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S et al (1992) Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80(7):1825–1831

    CAS  PubMed  Google Scholar 

  5. Schoch C, Haase D, Haferlach T, Freund M, Link H, Lengfelder E et al (1996) Incidence and implication of additional chromosome aberrations in acute promyelocytic leukaemia with translocation t(15;17)(q22;q21): a report on 50 patients. Br J Haematol 94(3):493–500

    Article  CAS  PubMed  Google Scholar 

  6. French CA (2012) Pathogenesis of NUT midline carcinoma. Annu Rev Pathol 7:247–265

    Article  CAS  PubMed  Google Scholar 

  7. Turc-Carel C, Aurias A, Mugneret F, Lizard S, Sidaner I, Volk C et al (1988) Chromosomes in Ewing’s sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet 32(2):229–238

    Article  CAS  PubMed  Google Scholar 

  8. Brett D, Whitehouse S, Antonson P, Shipley J, Cooper C, Goodwin G (1997) The SYT protein involved in the t(X;18) synovial sarcoma translocation is a transcriptional activator localised in nuclear bodies. Hum Mol Genet 6(9):1559–1564

    Article  CAS  PubMed  Google Scholar 

  9. Hunger SP, Ohyashiki K, Toyama K, Cleary ML (1992) Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev 6(9):1608–1620

    Article  CAS  PubMed  Google Scholar 

  10. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA et al (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2(5):367–376

    Article  CAS  PubMed  Google Scholar 

  11. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18(2):184–187

    Article  CAS  PubMed  Google Scholar 

  12. Herblot S, Steff AM, Hugo P, Aplan PD, Hoang T (2000) SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol 1(2):138–144

    Article  CAS  PubMed  Google Scholar 

  13. Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH (1991) The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci U S A 88(10):4367–4371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Royer-Pokora B, Loos U, Ludwig WD (1991) TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 6(10):1887–1893

    CAS  PubMed  Google Scholar 

  15. Van Vlierberghe P, van Grotel M, Beverloo HB, Lee C, Helgason T, Buijs-Gladdines J et al (2006) The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 108(10):3520–3529

    Article  PubMed  Google Scholar 

  16. Larson RC, Fisch P, Larson TA, Lavenir I, Langford T, King G et al (1994) T cell tumours of disparate phenotype in mice transgenic for Rbtn-2. Oncogene 9(12):3675–3681

    CAS  PubMed  Google Scholar 

  17. Neale GA, Rehg JE, Goorha RM (1997) Disruption of T-cell differentiation precedes T-cell tumor formation in LMO-2 (rhombotin-2) transgenic mice. Leukemia 11(Suppl 3(13)):289–290

    PubMed  Google Scholar 

  18. Hammond SM, Crable SC, Anderson KP (2005) Negative regulatory elements are present in the human LMO2 oncogene and may contribute to its expression in leukemia. Leuk Res 29(1):89–97

    Article  CAS  PubMed  Google Scholar 

  19. Matthews JM, Lester KL, Joseph S, Curtis DJ (2013) LIM-domain-only proteins in cancer. Nat Rev Cancer 12(2):111–122

    Article  Google Scholar 

  20. Yamada Y, Warren AJ, Dobson C, Forster A, Pannell R, Rabbitts TH (1998) The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc Natl Acad Sci U S A 95(7):3890–3895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. McCormack MP, Young LF, Vasudevan S, de Graaf CA, Codrington R, Rabbitts TH et al (2010) The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 327(5967):879–883

    Article  CAS  PubMed  Google Scholar 

  22. Martins VC, Ruggiero E, Schlenner SM, Madan V, Schmidt M, Fink PJ et al (2012) Thymus-autonomous T cell development in the absence of progenitor import. J Exp Med 209(8):1409–1417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Peaudecerf L, Lemos S, Galgano A, Krenn G, Vasseur F, Di Santo JP et al (2012) Thymocytes may persist and differentiate without any input from bone marrow progenitors. J Exp Med 209(8):1401–1408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Nam CH, Lobato MN, Appert A, Drynan LF, Tanaka T, Rabbitts TH (2008) An antibody inhibitor of the LMO2-protein complex blocks its normal and tumorigenic functions. Oncogene 27(36):4962–4968

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka T, Rabbitts TH (2009) Selection of complementary single-variable domains for building monoclonal antibodies to native proteins. Nucleic Acids Res 37(5):e41. [Research Support, Non-U.S. Gov’t]

    Article  PubMed Central  PubMed  Google Scholar 

  26. Appert A, Nam C-H, Lobato N, Priego E, Miguel RN, Blundell T et al (2009) Targeting LMO2 with a peptide aptamer establishes a necessary function in overt T-cell neoplasia. Cancer Res 69(11):4784–4790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sewell H, Tanaka T, El Omari K, Mancini EJ, Cruz A, Fernandez-Fuentes N et al (2014) Conformational flexibility of the oncogenic protein LMO2 primes the formation of the multi-protein transcription complex. Sci Rep 4:3643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wilkinson-White L, Matthews JM (2014) The PA207 peptide inhibitor of LIM-only protein 2 (Lmo2) targets zinc finger domains in a non-specific manner. Protein Pept Lett 21(2):132–139

    Article  CAS  PubMed  Google Scholar 

  29. Boerma EG, Siebert R, Kluin PM, Baudis M (2008) Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge. Leukemia 23(2):225–234

    Article  PubMed  Google Scholar 

  30. Brady G, MacArthur GJ, Farrell PJ (2008) Epstein–Barr virus and Burkitt lymphoma. Postgrad Med J 84(993):372–377

    Article  CAS  PubMed  Google Scholar 

  31. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6(8):635–645

    Article  CAS  PubMed  Google Scholar 

  32. Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  34. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16(4):253–264

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Zhao X, Gao P, Wu M (2013) c-Myc modulates microRNA processing via the transcriptional regulation of Drosha. Sci Rep 3:1942

    Google Scholar 

  36. Gregory MA, Hann SR (2000) c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol 20(7):2423–2435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Beverly LJ, Varmus HE (2009) MYC-induced myeloid leukemogenesis is accelerated by all six members of the antiapoptotic BCL family. Oncogene 28(9):1274–1279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Liu D, Shimonov J, Primanneni S, Lai Y, Ahmed T, Seiter K (2007) t(8;14;18): a 3-way chromosome translocation in two patients with Burkitt’s lymphoma/leukemia. Mol Cancer 6:35

    Article  PubMed Central  PubMed  Google Scholar 

  39. Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB (2004) Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 4(7):562–568. doi:10.1038/nrc1393

    Article  CAS  PubMed  Google Scholar 

  40. Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8(12):976–990. doi:10.1038/nrc2231

    Article  CAS  PubMed  Google Scholar 

  41. Klapproth K, Wirth T (2010) Advances in the understanding of MYC-induced lymphomagenesis. Br J Haematol 149(4):484–497

    Article  CAS  PubMed  Google Scholar 

  42. Hecht JL, Aster JC (2000) Molecular biology of Burkitt’s lymphoma. J Clin Oncol 18(21):3707–3721

    CAS  PubMed  Google Scholar 

  43. Wang H, Hammoudeh DI, Follis AV, Reese BE, Lazo JS, Metallo SJ et al (2007) Improved low molecular weight Myc-Max inhibitors. Mol Cancer Ther 6(9):2399–2408

    Article  CAS  PubMed  Google Scholar 

  44. Yin X, Giap C, Lazo JS, Prochownik EV (2003) Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 22(40):6151–6159

    Article  CAS  PubMed  Google Scholar 

  45. Follis AV, Hammoudeh DI, Wang H, Prochownik EV, Metallo SJ (2008) Structural rationale for the coupled binding and unfolding of the c-Myc oncoprotein by small molecules. Chem Biol 15(11):1149–1155

    Article  CAS  PubMed  Google Scholar 

  46. Clausen DM, Guo J, Parise RA, Beumer JH, Egorin MJ, Lazo JS et al (2010) In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of 10074-G5, a novel small-molecule inhibitor of c-Myc/Max dimerization. J Pharmacol Exp Ther 335(3):715–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Fletcher S, Prochownik EV (2015) Small-molecule inhibitors of the Myc oncoprotein. Biochim Biophysi Acta 1849(5):525–543

    Google Scholar 

  48. Goff SP, Gilboa E, Witte ON, Baltimore D (1980) Structure of the Abelson murine leukemia virus genome and the homologous cellular gene: studies with cloned viral DNA. Cell 22(3):777–785

    Article  CAS  PubMed  Google Scholar 

  49. Hantschel O, Superti-Furga G (2004) Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 5(1):33–44. doi:10.1038/nrm1280

    Article  CAS  PubMed  Google Scholar 

  50. Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W et al (2003) Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112(6):859–871

    Article  CAS  PubMed  Google Scholar 

  51. Honda H, Hirai H (2001) Model mice for BCR/ABL-positive leukemias. Blood Cells Mol Dis 27(1):265–278

    Article  CAS  PubMed  Google Scholar 

  52. Maru Y, Witte ON (1991) The BCR gene encodes a novel serine/threonine kinase activity within a single exon. Cell 67(3):459–468

    Article  CAS  PubMed  Google Scholar 

  53. Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C et al (1991) Bcr encodes a GTPase-activating protein for p21rac. Nature 351(6325):400–402. doi:10.1038/351400a0

    Article  CAS  PubMed  Google Scholar 

  54. Chuang TH, Xu X, Kaartinen V, Heisterkamp N, Groffen J, Bokoch GM (1995) Abr and Bcr are multifunctional regulators of the Rho GTP-binding protein family. Proc Natl Acad Sci U S A 92(22):10282–10286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zhao X, Ghaffari S, Lodish H, Malashkevich VN, Kim PS (2002) Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat Struct Biol 9(2):117–120

    CAS  PubMed  Google Scholar 

  56. Kantarjian HM, Talpaz M, Dhingra K, Estey E, Keating MJ, Ku S et al (1991) Significance of the P210 versus P190 molecular abnormalities in adults with Philadelphia chromosome-positive acute leukemia. Blood 78(9):2411–2418

    CAS  PubMed  Google Scholar 

  57. Suryanarayan K, Hunger S, Kohler S, Carroll A, Crist W, Link M et al (1991) Consistent involvement of the bcr gene by 9;22 breakpoints in pediatric acute leukemias. Blood 77(2):324–330

    CAS  PubMed  Google Scholar 

  58. Wilson G, Frost L, Goodeve A, Vandenberghe E, Peake I, Reilly J (1997) BCR-ABL transcript with an e19a2 (c3a2) junction in classical chronic myeloid leukemia. Blood 89(8):3064

    CAS  PubMed  Google Scholar 

  59. McWhirter JR, Galasso DL, Wang JY (1993) A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 13(12):7587–7595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Muller AJ, Young JC, Pendergast AM, Pondel M, Landau NR, Littman DR et al (1991) BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol Cell Biol 11(4):1785–1792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON (1991) BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 66(1):161–171

    Article  CAS  PubMed  Google Scholar 

  62. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM (2013) Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer [Review] 13(8):559–571

    Article  CAS  Google Scholar 

  63. Ren R (2005) Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5(3):172–183. doi:10.1038/nrc1567

    Article  CAS  PubMed  Google Scholar 

  64. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92(9):3362–3367

    CAS  PubMed  Google Scholar 

  65. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566

    Article  CAS  PubMed  Google Scholar 

  66. Trela E, Glowacki S, Blasiak J (2014) Therapy of chronic myeloid leukemia: twilight of the imatinib era? ISRN Oncol 2014:596483

    PubMed Central  PubMed  Google Scholar 

  67. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL et al (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41(3):899–906

    Article  CAS  PubMed  Google Scholar 

  68. Tsujimoto Y, Cossman J, Jaffe E, Croce CM (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228(4706):1440–1443

    Article  CAS  PubMed  Google Scholar 

  69. Cleary ML, Smith SD, Sklar J (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47(1):19–28

    Article  CAS  PubMed  Google Scholar 

  70. Dyer MJ, Zani VJ, Lu WZ, O’Byrne A, Mould S, Chapman R et al (1994) BCL2 translocations in leukemias of mature B cells. Blood 83(12):3682–3688

    CAS  PubMed  Google Scholar 

  71. Aventin A, Mecucci C, Guanyabens C, Brunet S, Soler J, Bordes R et al (1990) Variant t(2;18) translocation in a Burkitt conversion of follicular lymphoma. Br J Haematol 74(3):367–369

    Article  CAS  PubMed  Google Scholar 

  72. Leroux D, Monteil M, Sotto JJ, Jacob MC, Le Marc’Hadour F, Bonnefoi H et al (1990) Variant t(2;18) translocation in a follicular lymphoma. Br J Haematol 75(2):290–292

    Article  CAS  PubMed  Google Scholar 

  73. Adachi M, Tefferi A, Greipp PR, Kipps TJ, Tsujimoto Y (1990) Preferential linkage of bcl-2 to immunoglobulin light chain gene in chronic lymphocytic leukemia. J Exp Med 171(2):559–564

    Article  CAS  PubMed  Google Scholar 

  74. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59. doi:10.1038/nrm2308

    Article  CAS  PubMed  Google Scholar 

  75. Akao Y, Otsuki Y, Kataoka S, Ito Y, Tsujimoto Y (1994) Multiple subcellular localization of bcl-2: detection in nuclear outer membrane, endoplasmic reticulum membrane, and mitochondrial membranes. Cancer Res 54(9):2468–2471

    CAS  PubMed  Google Scholar 

  76. Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335(6189):440–442

    Article  CAS  PubMed  Google Scholar 

  77. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9(3):231–241. doi:10.1038/nrm2312

    Article  CAS  PubMed  Google Scholar 

  78. Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD et al (2013) Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152(3):519–531

    Article  CAS  PubMed  Google Scholar 

  79. Dlugosz PJ, Billen LP, Annis MG, Zhu W, Zhang Z, Lin J et al (2006) Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J 25(11):2287–2296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Shortt J, Johnstone RW (2012) Oncogenes in cell survival and cell death. Cold Spring Harb Perspect Biol 4(12)

    Google Scholar 

  81. Laulier C, Lopez BS (2012) The secret life of Bcl-2: apoptosis-independent inhibition of DNA repair by Bcl-2 family members. Mutat Res Rev Mutat Res 751(2):247–257

    Article  CAS  Google Scholar 

  82. Bai L, Wang S (2014) Targeting apoptosis pathways for new cancer therapeutics. Annu Rev Med 65:139–155

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline M. Matthews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matthews, J.M. (2015). Protein Complex Hierarchy and Translocation Gene Products. In: Rowley, J., Le Beau, M., Rabbitts, T. (eds) Chromosomal Translocations and Genome Rearrangements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-19983-2_21

Download citation

Publish with us

Policies and ethics