Mediation Analysis with Missing Data Through Multiple Imputation and Bootstrap

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 140)


A method using multiple imputation and bootstrap for dealing with missing data in mediation analysis is introduced and implemented in both SAS and R. Through simulation studies, it is shown that the method performs well for both MCAR and MAR data without and with auxiliary variables. It is also shown that the method can work for MNAR data if auxiliary variables related to missingness are included. The application of the method is demonstrated through the analysis of a subset of data from the National Longitudinal Survey of Youth. Mediation analysis with missing data can be conducted using the provided SAS macros and R package bmem.


Mediation analysis Missing data Multiple imputation Bootstrap 


  1. Alwin, D. F., & Hauser, R. M. (1975). The decomposition of effects in path analysis. American Sociological Review, 40, 37–47.CrossRefGoogle Scholar
  2. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182.CrossRefGoogle Scholar
  3. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.CrossRefzbMATHGoogle Scholar
  4. Bollen, K. A., & Stine, R. A. (1990). Direct and indirect effects: Classical and bootstrap estimates of variability. Sociological Methodology, 20, 115–140.CrossRefGoogle Scholar
  5. Center for Human Resource Research. (2006). NLSY79 CHILD & YOUNG ADULT DATA USERS GUIDE: A Guide to the 1986–2004 Child Data. Columbus, OH: The Ohio State UniversityGoogle Scholar
  6. Chen, Z. X., Aryee, S., & Lee, C. (2005). Test of a mediation model of perceived organizational support. Journal of Vocational Behavior, 66(3), 457–470.CrossRefGoogle Scholar
  7. Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112, 558–577.CrossRefGoogle Scholar
  8. Davis-Kean, P. E. (2005). The influence of parent education and family income on child achievement: The indirect role of parental expectations and the home environment. Journal of Family Psychology, 19, 294–304.CrossRefGoogle Scholar
  9. Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171–185.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Freedman, L. S., & Schatzkin, A. (1992). Sample size for studying intermediate endpoints within intervention trails or observational studies. American Journal of Epidemiology, 136, 1148–1159.Google Scholar
  11. Graham, J. W. (2003). Adding missing-data-relevant variables to fiml-based structural equation models. Structural Equation Modeling, 10, 80–100.MathSciNetCrossRefGoogle Scholar
  12. Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549–576.CrossRefGoogle Scholar
  13. Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206–213.CrossRefGoogle Scholar
  14. Grimm, K. J. (2008). Longitudinal associations between reading and mathematics. Developmental Neuropsychology, 33, 410–426.CrossRefGoogle Scholar
  15. Little, R. J. A., & Rubin, D. B. (1987). Statistical analysis with missing data. New York, NY: Wiley.zbMATHGoogle Scholar
  16. Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). New York, NY: Wiley-Interscience.zbMATHGoogle Scholar
  17. Lu, Z., Zhang, Z., & Lubke, G. (2011). Bayesian inference for growth mixture models with non-ignorable missing data. Mulitvariate Behavioral Research, 46, 567–597.CrossRefGoogle Scholar
  18. MacCorquodale, K., & Meehl, P. E. (1948). On a distinction between hypothetical constructs and intervening variables. Psychological Review, 55(2), 95–107.CrossRefGoogle Scholar
  19. MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York, NY: Taylor & Francis.Google Scholar
  20. MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annual Review of Psychology, 58, 593–614.CrossRefGoogle Scholar
  21. MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83–104.CrossRefGoogle Scholar
  22. MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99–128.CrossRefGoogle Scholar
  23. Mallinckrodt, B., Abraham, T. W., Wei, M., & Russell, D. W. (2006). Advance in testing statistical significance of mediation effects. Journal of Counseling Psychology, 53(3), 372–378.CrossRefGoogle Scholar
  24. Preacher, K. J., & Hayes, A. F. (2004). Spss and sas procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717–731.CrossRefGoogle Scholar
  25. Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavioral Research Methods, 40, 879–891.CrossRefGoogle Scholar
  26. Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592.MathSciNetCrossRefzbMATHGoogle Scholar
  27. Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.CrossRefGoogle Scholar
  28. Savalei, V., & Bentler, P. M. (2009). A two-stage approach to missing data: Theory and application to auxiliary variables. Structural Equation Modeling, 16, 477–497.MathSciNetCrossRefGoogle Scholar
  29. Schafer, J. L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall/CRC.CrossRefzbMATHGoogle Scholar
  30. Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422–445.CrossRefGoogle Scholar
  31. Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. In S. Leinhardt (Ed.), Sociological methodology (pp. 290–312). San Francisco: Jossey-Bass.Google Scholar
  32. Sobel, M. E. (1986). Some new results on indirect effects and their standard errors in covariance structure models. In N. Tuma (Ed.), Sociological methodology (pp. 159–186). Washington, DC: American Sociological Association.Google Scholar
  33. Wang, L., Zhang, Z., & Estabrook, R. (2009). Longitudinal mediation analysis of training intervention effects. In S. M. Chow, E. Ferrer, & F. Hsieh (Eds.), Statistical methods for modeling human dynamics: An interdisciplinary dialogue (pp. 349–380). New Jersey: Lawrence Erlbaum Associates.Google Scholar
  34. Woodworth, R. S. (1928). Dynamic psychology. In C. Murchison (Ed.), Psychologies of 1925 (pp. 111–126). Worcester, MA: Clark Universal Academy Press, Inc.Google Scholar
  35. Wu, S. S., Willcutt, E., Escovar, E., & Menon, V. (2014). Mathematics achievement, anxiety and their relation to internalizing and externalizing behaviors. Journal of Learning Disorders, 47(6), 503–514.Google Scholar
  36. Zhang, Z., & Wang, L. (2008). Methods for evaluating mediation effects: Rationale and comparison. In K. Shigemasu, A. Okada, T. Imaizumi, & T. Hoshino (Eds.), New trends in psychometrics (pp. 595–604). Tokyo: Universal Academy Press, Inc.Google Scholar
  37. Zhang, Z., & Wang, L. (2012). A note on the robustness of a full Bayesian method for non-ignorable missing data analysis. Brazilian Journal of Probability and Statistics, 26(3), 244–264.MathSciNetCrossRefzbMATHGoogle Scholar
  38. Zhang, Z., & Wang, L. (2013a). bmem: Mediation analysis with missing data using bootstrap. R package version 1.5.
  39. Zhang, Z., & Wang, L. (2013b). Methods for mediation analysis with missing data. Psychometrika, 78, 154–184.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of Notre DameNotre DameUSA
  2. 2.University of VirginiaCharlottesvilleUSA

Personalised recommendations