Skip to main content

Breeding for Al Tolerance by Unravelling Genetic Diversity in Bread Wheat

  • Chapter

Part of the Signaling and Communication in Plants book series (SIGCOMM,volume 24)

Abstract

Globally, Aluminium (Al) toxicity not only restricts cultivation of crop plants but also causes substantial losses in their production in areas where acidic soils are more prevalent. As plants are sessile, their roots are continuously exposed to Al when growing in acid mineral soils. Thus, the evolution of Al tolerance mechanisms is a prerequisite for plants to perform in these soils. Wheat is a major crop consumed by most of the human population around the world, and its demand is ever increasing. However, wheat is rather sensitive to Al toxicity, more than other major cereal crops, especially rice and maize. In this context, it has become imperative to develop Al-tolerant wheat cultivars which will help ameliorate this problem in a sustainable manner. Therefore, in order to develop improved cultivars for Al tolerance, information on both the manifestation of Al toxicity and the existence of natural variation is a prerequisite which facilitates the further elucidation of different mechanisms on the physiological, genetic and molecular levels. The improvement of any trait by plant breeding mainly relies on the availability of efficient screening techniques, but the pace of improvement depends on easy and reliable phenotyping techniques. In this chapter, we presented the advances made so far on Al tolerance in wheat with special focus on future perspectives, aiming to help for further improvement of Al tolerance in wheat in a sustainable way.

Keywords

  • Abiotic stresses
  • Metals
  • Aluminium
  • Al
  • Toxicity
  • Tolerance
  • Bread wheat
  • Triticum aestivum L
  • Sustainability

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-19968-9_7
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-19968-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

References

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can J Genet Cytol 26:701–705

    CrossRef  Google Scholar 

  • Archambault DJ, Zhang G, Taylor GJ (1996) Accumulation of Al in root mucilage of an Al-resistant and an Al-sensitive cultivar of wheat. Plant Physiol 112:1471–1478

    PubMed Central  CAS  PubMed  Google Scholar 

  • Basu U, Basu A, Taylor GJ (1994) Differential exudation of polypeptides by roots of aluminum-resistant and aluminum-sensitive cultivars of Triticum aestivum L. in response to aluminium stress. Plant Physiol 106:151–158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Basu U, McDonald-Stephens JL, Archambault DJ, Good AG, Briggs KG, Aung T, Taylor GJ (1997) Genetic and physiological analysis of doubled-haploid, aluminum-resistant lines of wheat provide evidence for the involvement of a 23 kD, root exudates polypeptide in mediating resistance. Plant Soil 196:283–288

    CAS  CrossRef  Google Scholar 

  • Basu U, Good AG, Aung T, Slaski JJ, Basu A, Briggs KG, Taylor GJ (1999) A 23-kDa, root exudates polypeptide co-segregates with aluminum resistance in Triticum aestivum. Physiol Plant 106:53–61

    CAS  CrossRef  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminum-induced mitochondrial maganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1269–1278

    CAS  CrossRef  Google Scholar 

  • Beckman I (1954) Sobre o cultivo e melhoramento do trigo (Triticum vulgare, Vill) no sul do Brasil. Agron Sul Rio Grandense 1:64–72 (in Portuguese)

    Google Scholar 

  • Berzonsky WA, Kimber G (1986) Tolerance of Triticum species to Al. Plant Breed 97:275–278

    CAS  CrossRef  Google Scholar 

  • Blamey FPC, Edmeades DC, Wheeler DM (1990) Role of root cation exchange capacity in different aluminum tolerance of Lotus species. J Plant Nutr 13:729–744

    CAS  CrossRef  Google Scholar 

  • Blamey FPC, Robinson NJ, Asher CJ (1993) Interspecific differences in aluminium tolerance in relation to root cation-exchange capacity. Dev Plant Soil Sci 50:91–96

    Google Scholar 

  • Brautigan DJ, Rengasamy P, Chittleborough DJ (2012) Aluminium speciation and phytotoxicity in alkaline soils. Plant Soil 360:187–196

    CAS  CrossRef  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Responses to abiotic stresses. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Cai S, Bai GH, Zhang D (2008) Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor Appl Genet 117:49–56

    CAS  PubMed  CrossRef  Google Scholar 

  • Camargo CEO (1981) Wheat improvement. I. The heritability of tolerance to aluminum toxicity. Bragantia 40:33–45 (in Portuguese)

    CrossRef  Google Scholar 

  • Camargo CEO (1984) Wheat improvement. VI. Heritability studies on aluminum tolerance using three concentrations of aluminum in nutrient solutions. Bragantia 43:279–291 (in Portuguese)

    CAS  CrossRef  Google Scholar 

  • Campbell LG, Lafever HN (1981) Heritability of aluminum tolerance in wheat. Cereal Res Commun 9:281–287

    CAS  Google Scholar 

  • Carver BF, Ownby JD (1995) Acid soil tolerance in wheat. Adv Agron 54:117–173

    CAS  CrossRef  Google Scholar 

  • Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLauchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R, Langridge P (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Agric Res 52:1089–1119

    CAS  CrossRef  Google Scholar 

  • Choudhry MA (1978) Genetic differences for aluminum tolerance in five wheat crosses. Agr Abstr Madison, Am Soc Agr, 151

    Google Scholar 

  • Christiansen-Weniger CI, Groneman AF, van Veen JA (1992) Associative N2 fixation and root exudation of organic acids from wheat cultivars of different aluminum tolerance. Plant Soil 139:167–174

    CAS  CrossRef  Google Scholar 

  • Dai J, Bai G, Zhang D, Hong D (2013) Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Euphytica 192:171–179

    CAS  CrossRef  Google Scholar 

  • de la Fuente JM, Ramırez-Rodrıguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    PubMed  CrossRef  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993a) Aluminum tolerance in wheat (Triticum aestivum L.) (II. Aluminum-stimulated excretion of malic acid from root apices). Plant Physiol 103:695–702

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993b) Aluminum tolerance in wheat (Triticum aestivum L.) I. Uptake and distribution of aluminum in root apices. Plant Physiol 103:685–693

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high level aluminium tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci U S A 101:15249–15254

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Delhaize E, James RA, Ryan PR (2012a) Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. New Phytol 195:609–619

    CAS  PubMed  CrossRef  Google Scholar 

  • Delhaize E, Ma JF, Ryan PR (2012b) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17:341–348

    CAS  PubMed  CrossRef  Google Scholar 

  • Dixon J, Braun HJ, Kosina P, Crouch J (2009) Wheat facts and futures – 2007. CIMMYT, Mexico City

    Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    CAS  PubMed  CrossRef  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate Al stress and/or oxidative stress. Plant Physiol 122:657–665

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Ezaki B, Jataran K, Higashi A, Takahashi K (2013) A combination of five mechanisms confers a high tolerance for aluminum to a wild species of Poaceae, Andropogon virginicus L. Environ Exp Bot 93:35–44

    CAS  CrossRef  Google Scholar 

  • Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7:e1002221

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Foy CD, Fleming AL, Burns GR, Armiger WH (1967) Characterization of differential aluminum tolerance among varieties of wheat and barley. Soil Sci Soc Am Proc 31:513–521

    CAS  CrossRef  Google Scholar 

  • Foy CD, Lee EH, Coradetti CA, Taylor GJ (1990) Organic acids related to differential aluminum tolerance in wheat (Triticum aestivum) cultivars. In: Beusichem ML (ed) Plant nutrition-physiology and application. Kluwer, Dordrecht, pp 381–389

    CrossRef  Google Scholar 

  • Furuichi T, Sasaki T, Tsuchiya Y, Ryan PR, Delhaize E, Yamamoto Y (2010) Extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat. Plant J 64:47–55

    CAS  PubMed  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    CAS  PubMed  CrossRef  Google Scholar 

  • Garcia-Oliveira AL, Benito C, Prieto P, de Andrade MR, Rodriques-Pousada C, Guedes-Pinto H, Martins-Lopes P (2013) Molecular characterization of TaSTOP1 homoeologues and their response to aluminium and proton (H+) toxicity in bread wheat (Triticum aestivum L.). BMC Plant Biol 13:134

    PubMed Central  PubMed  CrossRef  CAS  Google Scholar 

  • Garcia-Oliveira AL, Martins-Lopes P, Tolrá R, Poschenrieder C, Tarquis M, Guedes-Pinto H, Benito C (2014) Molecular characterization of the citrate transporter gene TaMATE1 and expression analysis of upstream genes involved in organic acid transport under Al stress in bread wheat (Triticum aestivum L.). Physiol Plant 152:441–452

    CAS  PubMed  CrossRef  Google Scholar 

  • Garcia-Oliveira AL, Chander S, Barceló J, Poschenrieder C (2015) Aluminium stress in crop plants. In: Yadav P, Kumar S, Jain V (eds) Recent advances in plant stress physiology. Astral Int Publ (in press)

    Google Scholar 

  • Granados G, Pandey S, Ceballos H (1993) Response to selection for tolerance to acid soilsin tropical maize population. Crop Sci 33:936–940

    CrossRef  Google Scholar 

  • Guerinot ML (2007) It’s elementary: enhancing Fe3+ reduction improves rice yield. Proc Natl Acad Sci U S A 104:7311–7312

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Hamel F, Breton C, Houde M (1998) Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor. Planta 205:531–538

    CAS  PubMed  CrossRef  Google Scholar 

  • Han C, Dai SF, Liu DC, Pu ZJ, Wei YM, Zheng YL, Wen DJ, Zhao L, Yan ZH (2013) TaALMT1 promoter sequence compositions, acid tolerance, and Al tolerance in wheat cultivars and landraces from Sichuan in China. Genet Mol Res 12:5602–5616

    CAS  PubMed  CrossRef  Google Scholar 

  • Henderson M, Ownby JD (1991) The role of root cap mucilage secretion in aluminum tolerance in wheat. Biochem Curr Topics Plant Physiol 10:134–141

    CAS  Google Scholar 

  • Horst WJ, Wagner A, Marschner H (1982) Mucilage protects root meristems from aluminium injury. Z Pflanzenphysiol 105:435–444

    CAS  CrossRef  Google Scholar 

  • Hu SW, Bai GH, Carver BF, Zhang DD (2008) Diverse origins of aluminum-resistance sources in wheat. Theor Appl Genet 118:29–41

    CAS  PubMed  CrossRef  Google Scholar 

  • Kerridge PC, Kronstad WE (1968) Evidence of genetic resistance to aluminium toxicity in wheat (Triticum aestivum vill., Host). Agron J 60:710–711

    CrossRef  Google Scholar 

  • Kinraide TB (1988) Proton extrusion by wheat roots exhibiting severe aluminum toxicity symptoms. Plant Physiol 88:418–423

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV (1992) Interactive effects of Al3+, H+ and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol 99:1461–1468

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminium toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    CAS  CrossRef  Google Scholar 

  • Lafever HN, Campbell LG, Foy CD (1977) Differential response of wheat cultivars to Al. Agron J 69:563–568

    CAS  CrossRef  Google Scholar 

  • Ligaba A, Kochian L, Pineros M (2009) Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat. Plant J 60:411–423

    CAS  PubMed  CrossRef  Google Scholar 

  • Ligaba A, Dreyer I, Margaryan A, Schneider DJ, Kochian L, Piñeros M (2013) Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1. Plant J 76:766–780

    CAS  PubMed  CrossRef  Google Scholar 

  • Ma G, Rengasamy P, Rathgen J (2003) Phytotoxicity of aluminium to wheat plants in high-pH solutions. Aust J Exp Agric 43:497–501

    CAS  CrossRef  Google Scholar 

  • Ma HX, Bai GH, Carver BF, Zhou LL (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112:51–57

    CAS  PubMed  CrossRef  Google Scholar 

  • Ma HX, Bai GH, Lu WZ (2006) Quantitative trait loci for aluminum resistance in wheat cultivar Chinese Spring. Plant Soil 283:239–249

    CAS  CrossRef  Google Scholar 

  • Magalhães JV, Liu J, Guimarães CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    PubMed  CrossRef  CAS  Google Scholar 

  • Martins-Lopes P, Maças B, Guedes-Pinto H (2009) Portuguese bread wheat germplasm evaluation for aluminium tolerance. Cereal Res Commun 37:179–188

    CAS  CrossRef  Google Scholar 

  • Massot N, Nicander B, Barceló J, Poschenrieder C, Tillberg EE (2002) A rapid increase in cytokinin levels and enhanced ethylene evolution precede Al3+-induced inhibition of root growth in bean seedlings (Phaseolus vulgaris L.). Plant Growth Regul 37:105–112

    CAS  CrossRef  Google Scholar 

  • Miller TE, Iqel N, Readers SM, Mahmood A, Cant KA, King IP (1997) A cytogenetic approach to the improvement of aluminium tolerance in wheat. New Phytol 137:93–98

    CrossRef  Google Scholar 

  • Mohammed YSA, Eltayeb AE, Tsujimoto H (2013) Enhancement of aluminum tolerance in wheat by addition of chromosomes from the wild relative Leymus racemosus. Breeding Sci 63:407–416

    CAS  CrossRef  Google Scholar 

  • Navakode S, Weidner A, Lohwasser U, Röder MS, Börner A (2009) Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica 166:283–290

    CAS  CrossRef  Google Scholar 

  • Navakode S, Neumann K, Kobiljski B, Lohwasser U, Borner A (2014) Genome wide association mapping to identify aluminium tolerance loci in bread wheat. Euphytica 198:401–411

    CAS  CrossRef  Google Scholar 

  • Osawa H, Matsumoto H (2001) Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiol 126:411–420

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Ownby JD, Popham HR (1990) Citrate reverses the inhibition of wheat root growth caused by aluminum. J Plant Physiol 135:588–591

    CAS  CrossRef  Google Scholar 

  • Papernik LA, Bethea AS, Singleton TE, Magalhães JV, Garvin DF, Kochian LV (2001) Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese spring wheat. Planta 212:829–834

    CAS  PubMed  CrossRef  Google Scholar 

  • Parker DR (1995) Root growth analysis: an underutilised approach to understanding aluminium rhizotoxicity. Plant Soil 171:151–157

    CAS  CrossRef  Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat. Roles for root apical phosphate and malate exudation. Plant Physiol 112:591–597

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pereira JF, Zhou G, Delhaize E, Richardson T, Ryan PR (2010) Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann Bot 106:205–214

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Pinto-Carnide O, Guedes-Pinto H (1999) Aluminium tolerance variability in rye and wheat Portuguese germplasm. Genet Resour Crop Evol 46:81–85

    CrossRef  Google Scholar 

  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminium tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827

    CAS  CrossRef  Google Scholar 

  • Puthota V, Cruz-Ortega R, Jonson J, Ownby J (1991) An ultrastructural study of the inhibition of mucilage secretion in the wheat root cap by aluminum. In: Wright RJ, Baligar VC, Murrmann RP (eds) Plant-soil interactions at low pH. Kluwer, Dordrecht, pp 779–789

    CrossRef  Google Scholar 

  • Rajaram S, Pfeiffer W, Singh R (1988) Developing bread wheat for acid soils through shuttle breeding. In: Kohli MM, Rajaram S (eds) Wheat breeding in acid soils. Review of Brazilian/CIMMYT Collaboration, 1974–1986, pp 51–58

    Google Scholar 

  • Raman H, Zhang KR, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    CAS  PubMed  CrossRef  Google Scholar 

  • Raman H, Ryan PR, Raman R, Stodart BJ, Zhang K, Martin P, Wood R, Sasaki T, Yamamoto Y, Mackay M, Hebb DM, Delhaize E (2008) Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theor Appl Genet 116:343–354

    CAS  PubMed  CrossRef  Google Scholar 

  • Raman H, Stodart B, Ryan PR, Delhaize E, Emebiri L, Raman R, Coombes N, Milgate A (2010) Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 53:957–966

    CAS  PubMed  CrossRef  Google Scholar 

  • Ramírez-Benítez JE, Muñoz-Sánchez JA, Becerril-Chi KM, Miranda-Ham ML, Castro-Concha LA, Hernández-Sotomayor SMT (2011) Aluminum induces changes in oxidative burst scavenging enzymes in Coffea arabica L. suspension cells with differential Al tolerance. J Inorg Biochem 105:1523–1528

    PubMed  CrossRef  CAS  Google Scholar 

  • Rengel Z (1992) Disturbance of Cs2+ homeostasis as a primary trigger in the Al toxicity syndrome. Plant Cell Environ 15:931–938

    CAS  CrossRef  Google Scholar 

  • Ribeiro-Carvalho C, Guedes-Pinto H, Heslop-Harrison JS, Schwarzacher T (2001) Introgression of rye chromatin on chromosome 2D in the Portuguese wheat landrace ‘Barbela’. Genome 44:1122–1128

    CAS  PubMed  CrossRef  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    CrossRef  Google Scholar 

  • Rincón M, Gonzales RA (1992) Aluminum partitioning in intact roots of aluminum-tolerant and aluminum-sensitive wheat (Triticum aestivum L.) cultivars. Plant Physiol 99:1021–1028

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Ryan PR, Shaff JE, Kochian LV (1992) Correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars. Plant Physiol 99:1193–1200

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995a) Characterization of Al stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    CAS  CrossRef  Google Scholar 

  • Ryan PR, Delhaize E, Randall P (1995b) Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Funct Plant Biol 22:531–536

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plants. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    CAS  PubMed  CrossRef  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Ryan PR, Tyerman SD, Sasaki T, Furuichi T, Yamamoto Y, Zhang WH, Delhaize E (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot 62:9–20

    CAS  PubMed  CrossRef  Google Scholar 

  • Samuels TD, Kucukakyuz K, Rincon-Zachary M (1997) Al partitioning patterns and root growth as related to al sensitivity and al tolerance in wheat. Plant Physiol 113:527–534

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    CAS  PubMed  CrossRef  Google Scholar 

  • Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H, Yamamoto Y (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47:1343–1354

    CAS  PubMed  CrossRef  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Missouri Agricultural Experimental Station Research Bulletin 572:1–58

    Google Scholar 

  • Silva JP, Reboredo F, Guedes-Pinto H, Mello-Sampayo T (1991) ‘Barbela’, a bread wheat cultivar tolerant to aluminum. Brotéria-Genética 12(87):65–68

    Google Scholar 

  • Silva S, Pinto-Carnide O, Martins-Lopes P, Matos M, Guedes-Pinto H, Santos C (2010) Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Environ Exper Bot 68:91–98

    CAS  CrossRef  Google Scholar 

  • Snowden KC, Gardner RC (1993) Five genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiol 103:855–861

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Stass A, Smit I, Eticha D, Oettler G, Horst WJ (2008) The significance of organic anion exudation for the aluminum resistance of primary triticale derived from wheat and rye parents differing in aluminum resistance. J Plant Nutr Soil Sci 171:634–642

    CAS  CrossRef  Google Scholar 

  • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci 42:1541–1546

    CrossRef  Google Scholar 

  • Tice KR, Parker DR, DeMason DA (1992) Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminumin toxicated wheat. Plant Physiol 100:309–318

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M, Tada Y, Yamamoto YY, Koyama H (2015) STOP1, CAMTA2 and other transcription factors are involved in aluminum-inducible AtALMT1 expression. Plant Physiol doi:10.1104/pp.114.256552

    Google Scholar 

  • Tolrá R, Barcelo J, Poschenrieder C (2009) Constitutive and aluminium induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance. J Inorg Biochem 103:1486–1490

    PubMed  CrossRef  CAS  Google Scholar 

  • Tovkach A, Ryan PR, Richardson AE, Lewis DC, Rathjen TM, Ramesh S, Tyerman SD, Delhaize E (2013) Transposon mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiol 161:880–892

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Wallace SU, Anderson IC (1984) Aluminum toxicity and DNA synthesis in wheat roots. Agron J 76:5–8

    CAS  CrossRef  Google Scholar 

  • Whitten M (1997) Subsurface acidification: estimation lime requirements from lime dissolution rates in the field. In: Williamson DR (ed) Proceedings of the fourth triennial Western Australian soil science conference, African Reef Resort, Geraldton, Western Australia, pp 128–131

    Google Scholar 

  • Xu FJ, Li G, Jin CW, Liu WJ, Zhang SS, Zhang YS, Lin XY (2012) Aluminum-induced changes in reactive oxygen species accumulation, lipid peroxidation and antioxidant capacity in wheat root tips. Biol Plantarum 56:89–96

    CAS  CrossRef  Google Scholar 

  • Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ahn SJ, Matsumoto H (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol 46:812–816

    CAS  PubMed  CrossRef  Google Scholar 

  • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Zhang G, Taylor GJ (1988) Effect of aluminum on growth and distribution of aluminum in tolerant and sensitive cultivars of Triticum aestivum L. Commun Soil Sci Plant Anal 19:1195–1205

    CAS  CrossRef  Google Scholar 

  • Zhang G, Taylor GJ (1989) Kinetics of aluminum uptake by excised roots of aluminum-tolerant and aluminum-sensitive cultivars of Triticum aestivum L. Plant Physiol 91:1094–1099

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Zhang G, Taylor GJ (1990) Kinetics of aluminum uptake in Triticum aestivum L. Identity of the linear phase of aluminum uptake by excised roots of aluminum-tolerant and aluminum-sensitive cultivars. Plant Physiol 94:577–584

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

  • Zhou LL, Bai GH, Ma HX, Carver BF (2007) Quantitative trait loci for aluminum resistance in wheat. Mol Breed 19:153–161

    CAS  CrossRef  Google Scholar 

  • Zhou GF, Delhaize E, Zhou M, Ryan PR (2013) The barley MATE gene, HvAACT1, increases citrate efflux and Al tolerance when expressed in wheat and barley. Ann Bot 112:603–612

    PubMed Central  CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Luisa Garcia-Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garcia-Oliveira, A.L., Poschenrieder, C., Barceló, J., Martins-Lopes, P. (2015). Breeding for Al Tolerance by Unravelling Genetic Diversity in Bread Wheat. In: Panda, S., Baluška, F. (eds) Aluminum Stress Adaptation in Plants. Signaling and Communication in Plants, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-19968-9_7

Download citation