Skip to main content

Aluminum-Induced Inhibition of Root Growth: Roles of Cell Wall Assembly, Structure, and Function

  • Chapter
Aluminum Stress Adaptation in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 24))

Abstract

Aluminum (Al) toxicity is the most important soil constraint for plant growth and development in acid soils. It is a matter of debate whether the primary lesions of Al toxicity are apoplastic or symplastic, while there is increasing physiological, biochemical, and molecular evidence showing that the modification of cell wall properties contributes to the Al-induced inhibition of root growth. The rapid binding of Al in the root cell wall particularly to the pectin matrix and hemicellulose can affect cell wall properties. Most recent studies have revealed that the local accumulation of auxin in the most Al-sensitive root zone of the root apex is a major factor leading to Al-induced root-growth inhibition. Evidence suggests that the auxin effect is mediated mainly via modification of cell wall structural properties. A further in-depth characterization of the Al-induced apoplastic reactions in the most Al-sensitive zone of the root apex is urgently required to better understand the phytohormone-mediated signaling network leading to Al-induced inhibition of root growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baluška F, Mancuso S (2013) Root apex transition zone as oscillatory zone. Front Plant Sci 2:354

    Google Scholar 

  • Baluška F, Parker JS, Barlow PW (1992) Specific patterns of cortical and endoplasmic microtubules associated with cell growth and tissue differentiation in roots of maize (Zea mays L.). J Cell Sci 103:191–200

    Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2001) A polarity crossroad in the transition growth zone of maize root apices: cytoskeletal and developmental implications. J Plant Growth Regul 20:170–181

    Article  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2010) Root apex transition zone: a signalling-response nexus in the root. Trends Plant Sci 15:402–408

    Article  PubMed  CAS  Google Scholar 

  • Baron-Epel O, Gharyal PK, Schindler M (1988) Pectins as mediators of wall porosity in soybean cells. Planta 175:389–395

    Article  CAS  PubMed  Google Scholar 

  • Bauchot AD, Hallett IC, Redgwell RJ, Lallu N (1999) Cell wall properties of kiwifruit affected by low temperature breakdown. Postharvest Biol Technol 16:245–255

    Article  CAS  Google Scholar 

  • Blamey FPC, Edmeades DC, Wheeler DM (1990) Role of root cation-exchange capacity in differential aluminium tolerance of Lotus species. J Plant Nutr 13:729–744

    Article  CAS  Google Scholar 

  • Blamey FPC, Asher CJ, Edwards DG, Kerven GL (1993) In vitro evidence of aluminium effects on solution movement through root cell walls. J Plant Nutr 16:555–562

    Article  CAS  Google Scholar 

  • Bordenave M (1996) Analysis of pectin methyl esterases. In: Linskens H, Jackson J (eds) Plant cell wall analysis. Springer, Berlin, pp 165–180

    Chapter  Google Scholar 

  • Boyer JS (2009) Cell wall biosynthesis and the molecular mechanism of plant enlargement. Funct Plant Biol 36:383–394

    Article  CAS  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  CAS  PubMed  Google Scholar 

  • Brett C, Waldron K (1996) Physiology and biochemistry of the plant cell wall. Chapman and Hall, London

    Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Yamamoto Y, Matsumoto H (1999) Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron. Plant Cell Environ 22:1009–1017

    Article  CAS  Google Scholar 

  • Chen XY, Kim JY (2009) Callose synthesis in higher plants. Plant Signal Behav 4:489–492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Sucoff EI, Stadelmann EJ (1991) Aluminum and temperature alteration of cell membrane permeability of Quercus rubra. Plant Physiol 96:644–649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Q, Guo CL, Wang P, Chen XQ, Wu KH, Li KZ, Yu YX, Chen LM (2013) Up-regulation and interaction of the plasma membrane H+-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress. Plant Physiol Biochem 70:504–511

    Article  CAS  PubMed  Google Scholar 

  • Chesson A, Gardner PT, Wood TJ (1997) Cell wall porosity and available surface area of wheat straw and wheat grain fractions. J Sci Food Agr 75:289–295

    Article  CAS  Google Scholar 

  • Cleland RE (1995) Auxin and cell elongation. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer, Dordrecht, pp 214–227

    Chapter  Google Scholar 

  • Collet L, Horst WJ (2001) Characterisation of maize cultivars in their adaptation to acid soils on the single plant level. In: Horst WJ, Schenk MK, Bürckert A et al (eds) Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Kluwer, Dordrecht, pp 86–87

    Chapter  Google Scholar 

  • Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177:121–130

    Article  CAS  Google Scholar 

  • Cosgrove DJ (1997) Assembly and enlargement of the primary cell wall in plants. Annu Rev Cell Dev Biol 13:171–201

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delhaize E, Ma JF, Ryan PR (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17:341–348

    Article  CAS  PubMed  Google Scholar 

  • Doncheva S, Amenós M, Poschenrieder C, Barceló J (2005) Root cell patterning: a primary target for aluminium toxicity in maize. J Exp Bot 56:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Eticha D, Staß A, Horst WJ (2005) Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance. Plant Cell Environ 28:1410–1420

    Article  CAS  Google Scholar 

  • Fleischer A, ÓNeill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerendás J (2007) Significance of polyamines for pectin methylesterase activity and the ion dynamics in the apoplast. In: Sattelmacher B, Horst WJ (eds) The apoplast of higher plants: compartment of storage, transport, and reactions. Kluwer, Dordrecht, pp 67–83

    Chapter  Google Scholar 

  • Grabski S, Arnoys E, Busch B, Schindler M (1998) Regulation of actin tension in plant cells by kinases and phosphatases. Plant Physiol 116:279–290

    Article  PubMed Central  CAS  Google Scholar 

  • Gunsé B, Poschenrieder C, Barceló J (1997) Water transport properties of roots and root cortical cells in proton- and Al-stressed maize varieties. Plant Physiol 113:595–602

    PubMed Central  PubMed  Google Scholar 

  • Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505

    Article  CAS  PubMed  Google Scholar 

  • Hartwell BL, Pember FR (1918) The presence of aluminium as a reason for the difference in the effect of so-called acid soil on barley and rye. Soil Sci 6:259–281

    Article  CAS  Google Scholar 

  • Horst WJ (1995) The role of the apoplast in aluminium toxicity and resistance of higher plants: a review. Zeitschrift für Pflanzenernährung und Bodenkunde 158:419–428

    Article  CAS  Google Scholar 

  • Horst WJ, Asher CJ, Cakmak J, Szulkiewicz P, Wissemeier AH (1992) Short-term responses of soybean roots to aluminium. J Plant Physiol 140:174–178

    Article  CAS  Google Scholar 

  • Horst WJ, Püschel A-K, Schmohl N (1997) Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant Soil 192:23–30

    Article  CAS  Google Scholar 

  • Horst WJ, Schmohl N, Kollmeier M, Baluska F, Sivaguru M (1999) Does aluminium affect root growth of maize through interaction with the cell wall–plasma membrane–cytoskeleton continuum? Plant Soil 215:163–174

    Article  CAS  Google Scholar 

  • Horst WJ, Kollmeier M, Schmohl N et al (2007) Significance of the root apoplast for aluminium toxicity and resistance of maize. In: Sattelmacher B, Horst W (eds) The apoplast of higher plants: compartment of storage, transport, and reactions. Kluwer, Dordrecht, pp 49–66

    Chapter  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Illéš P, Schlicht M, Pavlovkin J, Lichtscheidl I, Baluška F, Ovečka M (2006) Aluminium toxicity in plants: internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behavior, and nitric oxide production. J Exp Bot 57:4201–4213

    Article  PubMed  CAS  Google Scholar 

  • Kauss H (1996) Callose synthesis. In: Smallwood M, Knox JP, Bowles DJ (eds) Membranes: specialized functions in plants. BIOS Scientific Publishers, Oxford, pp 77–92

    Google Scholar 

  • Kauss H, Waldmann T, Quader H (1990) Ca2+ as a signal in the induction of callose synthesis. In: Ranjeva R, Boudet AM (eds) Signal perception and transduction in higher plants, vol 47. Springer, Berlin, pp 117–131

    Chapter  Google Scholar 

  • Khan MS, Tawaraya K, Sekimoto H, Koyama H, Kobayashi Y, Murayama T, Chuba M, Kambayashi M, Shiono Y, Uemura M, Ishikawa S, Wagatsuma T (2009) Relative abundance of delta5-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice. Physiol Plant 135:73–83

    Article  CAS  PubMed  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV (1992) Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol 99:1461–1468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klimashevskii EL, Dedov VM (1975) Localization of growth inhibiting action of aluminum ions in elongating cell walls. Fiziol Rast 22:1183–1190

    CAS  Google Scholar 

  • Kobayashi Y, Kobayashi Y, Sugimoto M, Lakshmanan V, Iuchi S, Kobayashi M, Bais HP, Koyama H (2013) Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers. Plant Physiol 162:732–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Miguel A, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol. doi:10.1146/annurev-arplant-043014-114822

  • Kohorn BD, Kohorn SL (2012) The cell wall-associated kinases, WAKs, as pectin receptors. Front Plant Sci 3:88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122:945–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kruger E, Sucoff E (1989) Growth and nutrient status of Quercus rubra L. in response to Al and Ca. J Exp Bot 40:653–658

    Article  CAS  Google Scholar 

  • Larsen PB, Tai C-Y, Kochian LV, Howell SH (1996) Arabidopsis mutants with increased sensitivity to aluminum. Plant Physiol 110:743–751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li JY, Liu J, Dong D, Jia X, McCouch SR, Kochian LV (2014) Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc Natl Acad Sci U S A 111:6503–6508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu J, Piñeros MA, Kochian LV (2014) The role of aluminum sensing and signaling in plant aluminum resistance. J Integr Plant Biol 56:221–230

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Shen RF, Nagao S, Tanimoto E (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol 45:583–589

    Article  CAS  PubMed  Google Scholar 

  • Maison A, Bertsch PM (1997) Aluminium speciation in the presence of wheat root cell walls: a wet chemical study. Plant Cell Environ 20:504–512

    Article  Google Scholar 

  • Maron LG, Kirst M, Mao C, Milner MJ, Menossi M, Kochian LV (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol 179:116–128

    Article  CAS  PubMed  Google Scholar 

  • Mattiello L, Kirst M, da Silva FR, Jorge RA, Menossi M (2010) Transcriptional profile of maize roots under acid soil growth. BMC Plant Biol 10:196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Milla MA, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol 130:1706–1716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narro LA, Arcos AL (2010) Genetics of aluminum-induced callose formation in maize roots, a selection trait for aluminum resistance. Crop Sci 50:1848–1853

    Article  CAS  Google Scholar 

  • Nishitani K (1997) The role of endoxyloglucan transferase in the organization of plant cell walls. Int Rev Cyt 173:157–206

    Article  CAS  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Panda S, Matsumoto H (2007) Molecular physiology of aluminum toxicity and tolerance in plants. Bot Rev 73:326–347

    Article  Google Scholar 

  • Panda SK, Baluska F, Matsumoto H (2009) Aluminum stress signaling in plants. Plant Signal Behav 4:592–597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2:a001446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  PubMed  CAS  Google Scholar 

  • Pitaksaringkarn W, Matsuoka K, Asahina M, Miura K, Sage-Ono K, Ono M, Yokoyama R, Nishitani K, Ishii T, Iwai H, Satoh S (2014) XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. Plant J 80:604–614

    Article  CAS  PubMed  Google Scholar 

  • Rajashekar CB, Lafta A (1996) Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiol 111:605–612

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rangel AF, Rao IM, Horst WJ (2007) Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance. J Exp Bot 58:3895–3904

    Article  CAS  PubMed  Google Scholar 

  • Rangel AF, Rao IM, Horst WJ (2009) Intracellular distribution and binding state of aluminum in root apices of two common bean (Phaseolus vulgaris) genotypes in relation to Al toxicity. Physiol Plant 135:162–173

    Article  CAS  PubMed  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rincón-Zachary M, Teaster ND, Sparks JA, Valster AH, Motes CM, Blancaflor EB (2010) Fluorescence resonance energy transfer-sensitized emission of yellow cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations. Plant Physiol 152:1442–1458

    Article  PubMed Central  PubMed  Google Scholar 

  • Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, DiTomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446

    Article  CAS  Google Scholar 

  • Ryan PR, Tyerman SD, Sasaki T, Furuichi T, Yamamoto Y, Zhang WH, Delhaize E (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot 62:9–20

    Article  CAS  PubMed  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192

    Article  CAS  Google Scholar 

  • Schmohl N, Horst WJ (2000) Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cell grown in suspension culture. Plant Cell Environ 23:735–742

    Article  CAS  Google Scholar 

  • Schmohl N, Pilling J, Fisahn J, Horst WJ (2000) Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiol Plant 109:419–427

    Article  CAS  Google Scholar 

  • Shen H, Ligaba A, Yamaguchi M, Osawa H, Shibata K, Yan X, Matsumoto H (2004) Effect of K-252a and abscisic acid on the efflux of citrate from soybean roots. J Exp Bot 55:663–671

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Hou NY, Schlicht M, Wan YL, Mancuso S, Baluska F (2008) Aluminium toxicity targets PIN2 in Arabidopsis root apices: Effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin Sci Bull 53:2480–2487

    CAS  Google Scholar 

  • Sivaguru M, Horst WJ (1998) The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol 116:155–163

    Article  PubMed Central  CAS  Google Scholar 

  • Sivaguru M, Baluska F, Volkmann D, Felle HH, Horst WJ (1999) Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol 119:1073–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminum-induced 1→3-beta-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124:991–1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sivaguru M, Ezaki B, He ZH, Tong H, Osawa H, Baluška F, Volkmann D, Matsumoto H (2003) Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol 132:2256–2266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sivaguru M, Horst WJ, Eticha D, Matsumoto H (2006) Aluminum inhibits apoplastic flow of high-molecular weight solutes in root apices of Zea mays L. J Plant Nutr Soil Sci 169:679–690

    Article  CAS  Google Scholar 

  • Sivaguru M, Liu J, Kochian LV (2013) Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. Plant J 76:297–307

    CAS  PubMed  Google Scholar 

  • Stass A, Horst WJ (2009) Callose in abiotic stress. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry, and biology of (1→3)-β-glucans and related polysaccharides. Academic Press, Burlington, MA, pp 499–524

    Chapter  Google Scholar 

  • Stass A, Kotur Z, Horst WJ (2007) Effect of boron on the expression of aluminium toxicity in Phaseolus vulgaris. Physiol Plant 131:283–290

    CAS  PubMed  Google Scholar 

  • Tabuchi A, Matsumoto H (2001) Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant 112:353–358

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Hayashi K, Kinoshita T (2012) Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 159:632–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor GJ, McDonald-Stephens JL, Hunter DB, Bertsch PM, Elmore D, Rengel Z, Reid RJ (2000) Direct measurement of aluminum uptake and distribution in single cells of Chara corallina. Plant Physiol 123:987–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teale WD, Paponov IA, Ditengou F, Palme K (2005) Auxin and the developing root of Arabidopsis thaliana. Physiol Plant 123:130–138

    Article  CAS  Google Scholar 

  • Van HL, Kuraishi S, Sakurai N (1994) Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiol 106:971–976

    PubMed Central  CAS  PubMed  Google Scholar 

  • Verbelen JP, De Cnodder T, Le J, Vissenberg K, Baluška F (2006) The root apex of Arabidopsis thaliana consists of four distinct zones of growth activities: meristematic zone, transition zone, fast elongation zone and growth terminating zone. Plant Signal Behav 1:296–304

    Article  PubMed Central  PubMed  Google Scholar 

  • Vierstra R, Haug A (1978) The effect of Al3+ on the physical properties of membrane lipids in Thermoplasma acidophilum. Biochem Bioph Res Co 84:138–143

    Article  CAS  Google Scholar 

  • von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Wagatsuma T, Ishikawa S, Uemura M, Mitsuhashi W, Kawamura T, Khan MSH, Tawaraya K (2005) Plasma membrane lipids are the powerful components for early stage aluminum tolerance in triticale. Soil Sci Plant Nutr 51:701–704

    Article  CAS  Google Scholar 

  • Wang Y, Staß A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wehr JB, Menzies NW, Blamey FPC (2004) Inhibition of cell-wall autolysis and pectin degradation by cations. Plant Physiol Biochem 42:485–492

    Article  CAS  PubMed  Google Scholar 

  • Wissemeier AH, Horst WJ (1995) Effect of calcium supply on aluminium-induced callose formation, its distribution and persistence in roots of soybean (Glycine max (L.) Merr.). J Plant Physiol 145:470–476

    Article  CAS  Google Scholar 

  • Wissemeier AH, Klotz F, Horst WJ (1987) Aluminium induced callose synthesis in roots of soybean (Glycine max L.). J Plant Physiol 129:487–492

    Article  CAS  Google Scholar 

  • Wissemeier AH, Diening A, Hergenröder A, Horst WJ, Mix-Wagner G (1992) Callose formation as parameter for assessing genotypical plant tolerance of aluminium and manganese. Plant Soil 146:67–75

    Article  CAS  Google Scholar 

  • Wu D, Shen H, Yokawa K, Baluška F (2014) Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. J Exp Bot 65:5305–5315

    Article  PubMed Central  PubMed  Google Scholar 

  • Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci U S A 107:18381–18385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang JL, You JF, Li YY, Wu P, Zheng SJ (2007) Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. Plant Cell Physiol 48:66–73

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang ZB, Eticha D, Rao IM, Horst WJ (2010) Alteration of cell-wall porosity is involved in osmotic stress-induced enhancement of aluminium resistance in common bean (Phaseolus vulgaris L.). J Exp Bot 61:3245–3258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, Liu Y, Shi YZ, Zheng SJ (2011) Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol 155:1885–1892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang ZB, Eticha D, Albacete A, Rao IM, Roitsch T, Horst WJ (2012) Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris). J Exp Bot 63:3109–3125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang ZB, Ro IM, Horst WJ (2013) Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Marschner Review. Plant Soil 372:3–25

    Article  CAS  Google Scholar 

  • Yang ZB, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z (2014) TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26:2889–2904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zakir Hossain AKM, Koyama H, Hara T (2006) Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. J Plant Physiol 163:39–47

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Taylor GJ (1989) Kinetics of aluminum uptake by excised roots of aluminum-tolerant and aluminum-sensitive cultivars of Triticum aestivum L. Plant Physiol 91:1094–1099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang G, Taylor GJ (1990) Kinetics of aluminum uptake in Triticum aestivum L. Identity of the linear phase of Al uptake by excised roots of aluminum-tolerant and aluminum-sensitive cultivars. Plant Physiol 94:577–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Shi WL, You JF, Bian MD, Qin XM, Yu H, Liu Q, Ryan PR, Yang ZM (2014) Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity. Plant Cell Environ. doi:10.1111/pce.12472

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao X-J, Sucoff E, Stadelmann EJ (1987) Al3+ and Ca2+ alteration of membrane permeability of Quercus rubra root cortex cells. Plant Physiol 83:159–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, Zhou YH, Braam J, Jiang T, Xu XY, Mao CZ, Pan YJ, Yang JL, Wu P, Zheng SJ (2012) XTH31, encoding an in vitro XEH/XET-active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis. Plant Cell 24:4731–4747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu XF, Lei GJ, Wang ZW, Shi YZ, Braam J, Li GX, Zheng SJ (2013) Coordination between apoplastic and symplastic detoxification confers plant aluminum resistance. Plant Physiol 162:1947–1955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu XF, Wan JX, Sun Y, Shi YZ, Braam J, Li GX, Zheng SJ (2014) Xyloglucan endotransglucosylase-hydrolase17 interacts with xyloglucan endotransglucosylase-hydrolase31 to confer xyloglucan endotransglucosylase action and affect aluminum sensitivity in Arabidopsis. Plant Physiol 165:1566–1574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Bao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, ZB., Horst, W.J. (2015). Aluminum-Induced Inhibition of Root Growth: Roles of Cell Wall Assembly, Structure, and Function. In: Panda, S., Baluška, F. (eds) Aluminum Stress Adaptation in Plants. Signaling and Communication in Plants, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-19968-9_13

Download citation

Publish with us

Policies and ethics