Skip to main content

Charge Doping in Water-Adsorbed Carbon Nanotubes

  • Chapter
  • First Online:
Conduction in Carbon Nanotube Networks

Part of the book series: Springer Theses ((Springer Theses))

  • 706 Accesses

Abstract

In the previous chapters, we have largely focused on the role of transmission between CNTs and its effect on the conductance of the network as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Taking the MLWF centres from an isolated molecule is an excellent approximation: when adsorbed on the CNT, the MLWF centres of the water molecule are found to change by less than \(3\times 10^{-3}\,{\AA }\).

  2. 2.

    This method cannot determine charge transfer that remains localised, however localised charge transfer does not contribute additional conductance.

  3. 3.

    See Appendix D for a definition of the local density of states.

  4. 4.

    The water geometry was generated using classical molecular dynamics as implemented in the Gromacs 4.5.5 package [35–38] with the GROMOS96 force field and 43a1 parameter set [39] and SPC water model [40] using NVT dynamics [41] at \(300 {\mathrm{{K}}}\) for \(20 {\mathrm{{ps}}}\). The water cluster was chosen as the first hydration shell surrounding a fully hydrated (10, 0) CNT. The electronic structure was calculated using onetep.

References

  1. R.A. Bell, M.C. Payne, A.A. Mostofi, Does water dope carbon nanotubes? J. Chem. Phys. 141(16), 164703 (2014)

    Article  ADS  Google Scholar 

  2. A.L. Antaris, J.-W.T. Seo, A.A. Green, M.C. Hersam, Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers. ACS Nano 4(8), 4725–4732 (2010)

    Article  Google Scholar 

  3. A.A. Green, M.C. Hersam, Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv. Mater. 23(19), 2185–2190 (2011)

    Article  Google Scholar 

  4. X. Tu, S. Manohar, A. Jagota, M. Zheng, DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460, 250–253 (2009)

    Article  ADS  Google Scholar 

  5. H.W. Lee, Y. Yoon, S. Park, J.H. Oh, S. Hong, L.S. Liyanage, H. Wang, S. Morishita, N. Patil, Y.J. Park, J.J. Park, A. Spakowitz, G. Galli, F. Gygi, P.H.S. Wong, J.B.H. Tok, J.M. Kim, Z. Bao, Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nature Commun. 2, 541 (2011)

    Google Scholar 

  6. K. Moshammer, F. Hennrich, M. Kappes, Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res. 2(8), 599–606 (2009)

    Article  Google Scholar 

  7. H. Liu, D. Nishide, T. Tanaka, H. Kataura, Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nature Commun. 2, 309 (2011)

    Google Scholar 

  8. M. Krüger, I. Widmer, T. Nussbaumer, M. Buitelaar, C. Schönenberger, Sensitivity of single multiwalled carbon nanotubes to the environment. New J. Phys. 5, 138–138 (2003)

    Article  ADS  Google Scholar 

  9. T. Someya, P. Kim, C. Nuckolls, Conductance measurement of single-walled carbon nanotubes in aqueous environment. Appl. Phys. Lett. 82(14), 2338 (2003)

    Article  ADS  Google Scholar 

  10. D. Tang, L. Ci, W. Zhou, S. Xie, Effect of H\(_2\)O adsorption on the electrical transport properties of double-walled carbon nanotubes. Carbon 44(11), 2155–2159 (2006)

    Article  Google Scholar 

  11. D. Kingrey, O. Khatib, P.G. Collins, Electronic fluctuations in nanotube circuits and their sensitivity to gases and liquids. Nano Lett. 6(7), 1564–1568 (2006)

    Article  ADS  Google Scholar 

  12. A. Zahab, L. Spina, P. Poncharal, C. Marlière, Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Phys. Rev. B 62, 10000–10003 (2000)

    Google Scholar 

  13. H.E. Romero, G.U. Sumanasekera, S. Kishore, P.C. Eklund, Effects of adsorption of alcohol and water on the electrical transport of carbon nanotube bundles. J. Phys.: Condens. Matter 16(12), 1939 (2004)

    ADS  Google Scholar 

  14. P.S. Na, H. Kim, H.-M. So, K.-J. Kong, H. Chang, B.H. Ryu, Y. Choi, J.-O. Lee, B.-K. Kim, J.-J. Kim, J. Kim, Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors. Appl. Phys. Lett. 87(9), 093101 (2005)

    Google Scholar 

  15. O.K. Varghese, P.D. Kichambre, D. Gong, K.G. Ong, E.C. Dickey, C.A. Grimes, Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators B: Chem. 81(1), 32–41 (2001)

    Article  Google Scholar 

  16. J. Zhao, A. Buldum, J. Han, J.P. Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13(2), 195 (2002)

    Article  ADS  Google Scholar 

  17. R. Pati, Y. Zhang, S.K. Nayak, P.M. Ajayan, Effect of H\(_2\)O adsorption on electron transport in a carbon nanotube. Appl. Phys. Lett. 81(14), 2638 (2002)

    Article  ADS  Google Scholar 

  18. D. Sung, S. Hong, Y.-H. Kim, N. Park, S. Kim, S.L. Maeng, K.-C. Kim, Ab initio study of the effect of water adsorption on the carbon nanotube field-effect transistor. Appl. Phys. Lett. 89(24), 243110 (2006)

    Article  ADS  Google Scholar 

  19. B. Agrawal, V. Singh, A. Pathak, R. Srivastava, Ab initio study of \({\rm {h}}_{2}\)O and water-chain-induced properties of carbon nanotubes. Phys. Rev. B 75, 195421 (2007)

    Google Scholar 

  20. I. Rungger, X. Chen, U. Schwingenschlögl, S. Sanvito, Finite-bias electronic transport of molecules in a water solution. Phys. Rev. B 81, 235407 (2010)

    Google Scholar 

  21. F. Labat, P. Baranek, C. Domain, C. Minot, C. Adamo, Density functional theory analysis of the structural and electronic properties of TiO\(_2\) rutile and anatase polytypes: performances of different exchange-correlation functionals. J. Chem. Phys. 126(15), 154703 (2007)

    Google Scholar 

  22. F. Jensen, Introduction to Computational Chemistry, ch. 9, 2nd edn. (Wiley, New York, 2006)

    Google Scholar 

  23. M.D. Segall, C.J. Pickard, R. Shah, M.C. Payne, Population analysis in plane wave electronic structure calculations. Mol. Phys. 89(2), 571–577 (1996)

    Article  ADS  Google Scholar 

  24. E. Davidson, S. Chakravorty, A test of the Hirshfeld definition of atomic charges and moments. Theor. Chim. Acta 83(5–6), 319–330 (1992)

    Article  Google Scholar 

  25. K. Bradley, S.-H. Jhi, P.G. Collins, J. Hone, M.L. Cohen, S.G. Louie, A. Zettl, Is the intrinsic thermoelectric power of carbon nanotubes positive? Phys. Rev. Lett. 85, 4361–4364 (2000)

    Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048–5079 (1981)

    Article  ADS  Google Scholar 

  28. Q. Hill, C.-K. Skylaris, Including dispersion interactions in the onetep program for linear-scaling density functional theory calculations. Proc. R. Soc. A: Math. Phys. Eng. Sci. 465(2103), 669–683 (2009)

    Article  MATH  ADS  Google Scholar 

  29. N. Marzari, D. Vanderbilt, Maximally localized generalized wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997)

    Google Scholar 

  30. N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Maximally localized wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012)

    Google Scholar 

  31. A.A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Wannier90: a tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 178(9), 685–699 (2008)

    Article  MATH  ADS  Google Scholar 

  32. S.J. Fox, C. Pittock, T. Fox, C.S. Tautermann, N. Malcolm, C.-K. Skylaris, Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules. J. Chem. Phys. 135(22), 224107 (2011)

    Google Scholar 

  33. F.A. Momany, Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid. J. Phys. Chem. 82(5), 592–601 (1978)

    Article  Google Scholar 

  34. N.D.M. Hine, P.W. Avraam, P. Tangney, P.D. Haynes, Linear-scaling density functional theory simulations of polar semiconductor nanorods. J. Phys.: Conf. Ser. 367(1), 012002 (2012)

    ADS  Google Scholar 

  35. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Computat. 4(3), 435–447 (2008)

    Article  Google Scholar 

  36. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005)

    Article  Google Scholar 

  37. E. Lindahl, B. Hess, D. van der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol. Model. Ann. 7(8), 306–317 (2001)

    Google Scholar 

  38. H. Berendsen, D. van der Spoel, R. van Drunen, GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56 (1995)

    Article  ADS  Google Scholar 

  39. W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hünenberger, P. Krüger, A.E. Mark, W.R.P. Scott, I.G. Tironi, Biomolecular Simulation: The GROMOS96 Manual and User Guide (Hochschuleverlag AG an der ETH Zürich, Zürich, Switzerland, 1996)

    Google Scholar 

  40. H. Berendsen, J. Postma, W. van Gunsteren, and J. Hermans, Interaction models for water in relation to protein hydration, in Intermolecular Forces, ed. by B. Pullman (Reidel, Dordrecht, 1981), p. 331

    Google Scholar 

  41. G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007)

    Article  ADS  Google Scholar 

  42. P. Giannozzi, R. Car, G. Scoles, Oxygen adsorption on graphite and nanotubes. J. Chem. Phys. 118(3), 1003–1006 (2003)

    Article  ADS  Google Scholar 

  43. P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459), 1801–1804 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Bell .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bell, R.A. (2015). Charge Doping in Water-Adsorbed Carbon Nanotubes. In: Conduction in Carbon Nanotube Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19965-8_8

Download citation

Publish with us

Policies and ethics