Skip to main content

Three-Dimensional Imaging for Electron Microscopy of Plastic-Embedded Plant Specimens

Abstract

One of the main limitations of conventional electron microscopy is the two-dimensional (2-D) nature of the images obtained. The cells and subcellular structures are three-dimensional (3-D) objects. Their 3-D architecture has been traditionally inferred from 2-D projections of thin sections (electron micrographs). This approach may be sufficient to obtain the information needed for certain studies. However, when it is essential to decipher the real (3-D) fine architecture of a cell, organelles, or subcellular structures, conventional electron micrographs may lead to misinterpretations. This is even more important when dealing with complex membranous plant cell structures such as Golgi stacks, the growing cell plate, the endoplasmic reticulum, or the thylakoids of a chloroplast. To study the fine 3-D structure of subcellular objects, it is possible to use different 3-D approaches, also based on electron microscopy, but yielding 3-D data. In this chapter, I describe the basics of how to obtain 3-D information of plant cell ultrastructure using three techniques: dual-axis electron tomography and serial section-based 3-D reconstructions from images taken with a transmission electron microscope (TEM) and a field emission scanning electron microscope (FESEM) equipped with a focused ion beam (FIB).

Keywords

  • 3-D reconstruction
  • 3-D imaging
  • Electron tomography
  • Field emission scanning electron microscope
  • Focused ion beam
  • Serial section reconstruction
  • Transmission electron microscopy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-19944-3_8
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-19944-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6

References

  1. Williams M (1977) Stereological techniques. In: Glauert AM (ed) Practical methods in electron microscopy. North Holland/American Elsevier, Amsterdam

    Google Scholar 

  2. Medina FJ, Risueño MC, Moreno Díaz de la Espina S (1983) 3-D reconstruction and morphometry of the fibrillar centres in plant cells in relation to the nucleolar activity. Biol Cell 48:31–38

    Google Scholar 

  3. Lockhausen J, Kristen U, Menhardt W, Dallas WJ (1990) Three-dimensional reconstruction of a plant dyctiosome from series of ultrathin sections using computer image processing. J Microsc 158:197–205

    CrossRef  Google Scholar 

  4. Ding R, McDonald KL, McIntosh JR (1993) 3-dimensional reconstruction and analysis of mitotic spindles from the yeast Schizosaccharomyces pombe. J Cell Biol 120:141–151

    CAS  CrossRef  PubMed  Google Scholar 

  5. Bereiter-Hahn J, Voth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion and fission of mitochondria. Microsc Res Tech 27:198–219

    CAS  CrossRef  PubMed  Google Scholar 

  6. Winey M, Mamay CL, Otoole ET, Mastronarde DN, et al (1995) 3-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129:1061–1615

    CrossRef  Google Scholar 

  7. Seguí-Simarro JM, Coronado MJ, Staehelin LA (2008) The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion. Plant Physiol 148:1380–1393

    PubMed Central  CrossRef  PubMed  Google Scholar 

  8. Seguí-Simarro JM, Staehelin LA (2006) Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis. Planta 223:223–236

    CrossRef  PubMed  Google Scholar 

  9. Seguí-Simarro JM, Staehelin LA (2009) Mitochondrial reticulation in shoot apical meristem cells of Arabidopsis provides a mechanism for homogenization of mtDNA prior to gamete formation. Plant Signal Behav 4:168–171

    PubMed Central  CrossRef  PubMed  Google Scholar 

  10. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    CAS  CrossRef  PubMed  Google Scholar 

  11. Cantoni M, Genoud C, Hébert C, Knott G (2010) Large volume, isotropic, 3D imaging of cell structure on the nanometer scale. Microsc Anal 24:13–16

    Google Scholar 

  12. Heymann JAW, Hayles M, Gestmann I, Giannuzzi LA, et al (2006) Site-specific 3D imaging of cells and tissues with a dual beam microscope. J Struct Biol 155:63–73

    PubMed Central  CrossRef  PubMed  Google Scholar 

  13. Merchán-Pérez A, Rodriguez J-R, Alonso-Nanclares L, Schertel A, DeFelipe J (2009) Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Front Neuroanat 3:18

    PubMed Central  PubMed  Google Scholar 

  14. McDonald KL, Auer M (2006) High-pressure freezing, cellular tomography, and structural cell biology. Biotechniques 41:137–143

    CAS  CrossRef  PubMed  Google Scholar 

  15. McIntosh R, Nicastro D, Mastronarde D (2005) New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol 15:43–51

    CAS  CrossRef  PubMed  Google Scholar 

  16. Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352

    CAS  CrossRef  PubMed  Google Scholar 

  17. Seguí-Simarro JM, Otegui MS, Austin JR, Staehelin LA (2008) Plant cytokinesis—Insights gained from electron tomography studies. In: Verma DPS, Hong Z (eds) Cell division control in plants, vol 9. Plant cell monographs. Springer, Berlin, pp 251–287

    Google Scholar 

  18. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  19. Hayat MA (2000) Principles and techniques of electron microscopy: biological applications, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  20. Robards AW, Wilson AJ (1993) Procedures in electron microscopy. John Wiley & Sons, Chichester

    Google Scholar 

  21. Kang B-H (2010) Electron microscopy and high-pressure freezing of Arabidopsis. In: Thomas M-R (ed) Methods in cell biology, vol 96. Academic Press, New York, pp 259–283

    Google Scholar 

  22. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    CrossRef  PubMed  Google Scholar 

  23. Mastronarde DN (2003) SerialEM: a program for automated tilt series acquisition on Tecnai microscopes using prediction of specimen position. Microsc Microanal 9(Suppl. 2):1182CD

    Google Scholar 

  24. The Boulder Laboratory for 3-D Electron Microscopy of Cells (2014) http://bio3d.colorado.edu/SerialEM/index.html. 7 July 2015

  25. Parra-Vega V (2015) Basic and applied aspects of embryogenesis induction in pepper and rapeseedmicrospores. PhD Thesis. Universitat Politècnica de València, Valencia, Spain

    Google Scholar 

  26. Seguí-Simarro JM, Austin JR, White EA, Staehelin LA (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of arabidopsis preserved by high-pressure freezing. Plant Cell 16:836–856

    PubMed Central  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

I want to thank the help of Mrs. Verónica Parra-Vega in the FESEM-FIB reconstructions. Thanks are also due to the staff of the Electron Microscopy Service of Universitat Politècnica de València (Valencia, Spain), and to the staff of the Boulder Laboratory for 3-D Electron Microscopy of Cells (Boulder, CO, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Seguí-Simarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seguí-Simarro, J. (2015). Three-Dimensional Imaging for Electron Microscopy of Plastic-Embedded Plant Specimens. In: Yeung, E., Stasolla, C., Sumner, M., Huang, B. (eds) Plant Microtechniques and Protocols. Springer, Cham. https://doi.org/10.1007/978-3-319-19944-3_8

Download citation