Skip to main content

The Glycol Methacrylate Embedding Resins—Technovit 7100 and 8100

Abstract

The glycol methacrylate (GMA) resin is an excellent embedding medium for high resolution light microscopy. Due to the hardness of the resin blocks, thinner sections can be made, allowing for greater resolution than the conventional paraffin sections. The main component of the popular Technovit 7100 (T7100) and Technovit 8100 (T8100) embedding media is GMA. Current formulations of embedding media allow serial sections to be made, especially when using Ralph glass knives in conjunction with a rotary microtome with a retraction return stroke. T7100 is used primarily for histological purposes while T8100 is designed for immunohistochemical (IHC) studies. This chapter details the processing, embedding, and sectioning procedures for the Technovit resins focusing on T7100. In addition, protocols for sectioning using disposable steel knives on a conventional rotary microtome are also included.

Keywords

  • Disposable steel knives
  • Embedding
  • Glass knives
  • Glycol methacrylate
  • Ralph knife
  • Rotary microtome
  • Technovit 7100
  • Technovit 8100

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-19944-3_4
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-19944-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2

References

  1. Newman SB, Borysko E, Swerdlow M (1949) New sectioning techniques for light and electron microscopy. Science 110:66–68

    CAS  CrossRef  PubMed  Google Scholar 

  2. Litwin JA (1985) Light microscopic histochemistry on plastic sections. Prog Histochem Cytochem 16:1–84

    CAS  CrossRef  PubMed  Google Scholar 

  3. Rosenberg M, Bartl P, Lesko J (1960) Water-soluble methacrylate as an embedding medium for the preparation of ultrathin sections. J Ultrast Res 4:298–303

    CAS  CrossRef  Google Scholar 

  4. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142

    CrossRef  Google Scholar 

  5. Yeung EC, Chan CKW (2015) Glycol methacrylate: the art of embedding and serial sectioning. Botany 93:1–8

    CAS  CrossRef  Google Scholar 

  6. Bennett HS, Wyrick AD, Lee SW, McNiel HJ Jr (1976) Science and art in preparing tissues embedded in plastic for light microscopy, with special reference to glycol methacrylate, glass knives and simple stains. Stain Technol 51:71–97

    CAS  PubMed  Google Scholar 

  7. Gerrits PO, Smid L (1983) A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. J Microscopy 132:81–85

    CAS  CrossRef  Google Scholar 

  8. Gerrits PO, Horobin RW (1996) Glycol methacrylate embedding for light microscopy: basic principles and trouble-shooting. J Histotech 19:297–311

    CAS  CrossRef  Google Scholar 

  9. Lackie S, Yeung EC (1996) Zygotic embryo development in Daucus carota. Can J Bot 74:990–998

    CrossRef  Google Scholar 

  10. Glauert AM, Lewis PR (1998) Biological specimen preparation for transmission electron microscopy. Princeton University press, New Jersey

    CrossRef  Google Scholar 

  11. Lee Y-I, Hsu S-T, Yeung EC (2013) Orchid protocorm-like bodies are somatic embryos. Amer J Bot 100:2121–2131

    CAS  CrossRef  Google Scholar 

  12. O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termarcarphi, Melbourne

    Google Scholar 

  13. Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  14. Horobin RW (1982) Histochemistry. Gustav Fischer, Stuttgart

    Google Scholar 

  15. Reid N (1975) Ultramicrotomy. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  16. Hand NM (2002) Plastic embedding media and techniques. In: Bancroft JD, Gamble M (eds) Theory and practice of histological techniques. Churchill Livingstone, London, pp 663–677

    Google Scholar 

  17. Quester R, Knifka J, Schroder R (2002) Optimization of glycol methacrylate embedding of large specimens in neurological research. Study of rat skull-brain specimens after implantation of polyester meshes. J Neurosci Meth 113:15–26

    CrossRef  Google Scholar 

  18. Yeung EC, Law SK (1987) Serial sectioning techniques for a modified LKB Historesin. Stain Technol 62:147–153

    CAS  PubMed  Google Scholar 

  19. Yeung EC (1984) Histological and histochemical staining methods. In: Vasal IK (ed) Cell culture and somatic cell genetics of plants, vol 1. Academic, New York, pp 689–697

    Google Scholar 

  20. Yeung EC, Saxena PK (2005) Histological techniques. In: Jain SM, Gupta PK (eds) Protocols for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 517–538

    CrossRef  Google Scholar 

  21. Soukup A (2014) Selected simple methods of plant cell wall histochemistry and staining for light microscopy. Meth Mol Biol 1080:25–52

    CAS  CrossRef  Google Scholar 

  22. Pappas PW (1971) The use of a chrome alum-gelatin (subbing) solution as a general adhesive for paraffin sections. Stain Technol 46:121–124

    CAS  PubMed  Google Scholar 

  23. Gerrits PO, Eppinger B (1995) Effects of storing initiated 2-hydroxyethyl methacrylate ­solutions for embedding tissues for light microscopy: some practical implications. Biotech Histochem 70:155–163

    CAS  CrossRef  PubMed  Google Scholar 

  24. Goodbody KC, Lloyd CW (1994) Immunofluorescence techniques for analysis of the cytoskeleton. In: Harris N, Oparka KJ (eds) Plant cell biology. IRL Press, Oxford, pp 221–243

    Google Scholar 

  25. Gerrits PO, Horobin RW, Stokroos I (1992) The effects of glycol methacrylate as a dehydrating agent on the dimensional changes of liver tissue. J Microscopy 165:273–280

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Yeung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yeung, E., Chan, C. (2015). The Glycol Methacrylate Embedding Resins—Technovit 7100 and 8100. In: Yeung, E., Stasolla, C., Sumner, M., Huang, B. (eds) Plant Microtechniques and Protocols. Springer, Cham. https://doi.org/10.1007/978-3-319-19944-3_4

Download citation